在2011年的多元大学培训大赛系列赛中,众多球队解决了“愤怒的小鸟”和“愤怒的小鸟”等问题。
这次我们专注于叫做Chuck的黄色小鸟。挖掘时,查克可以提高速度和距离。
你可以假设在挖掘之前,Chuck沿着抛物线飞行。当点击时,它会改变沿着切线飞行。卡盘从坐标(0,0)开始。现在给出猪的坐标(Px,0),攻丝位置(Tx)的x坐标和卡盘(α)的初始飞行角度。

∠AOx=α
请计算Chuck路径和地面围成的区域(由实线O-Tapping位置 - Pig-O包围的区域)
输入
第一行只包含一个整数T(T约为1000)表示测试用例的数量。对于每种情况,有两个整数,px tx和一个浮点数α(0 <Tx≤Px≤1000,0 <α<
)。

产量
每个案例的一行指定四舍五入到三位数的距离。
示例输入
1 2 1 1.0
示例输出
0.692
#include <iostream>
#include<stdio.h>#include<math.h>
using namespace std;
int main()
{
int px,tx,n;
double o,ty,a,b,c,s1,s2;
scanf("%d",&n);
while(n--)
{
scanf("%d%d%lf",&px,&tx,&o);
b=tan(o);
c=0;
a=(-tan(o)*px)/(2*tx*px-tx*tx);
s1=a*tx*tx*tx/3+b*tx*tx/2;
ty=a*tx*tx+tan(o)*tx;
s2=ty*(px-tx)*0.5;
printf("%.3lf\n",s1+s2);
}
return 0;
}