过河啊(贪心加思维)

一群N人希望只用一条船过河,最多可载两人。因此,必须安排某种穿梭布置以便来回划船,以便所有人都可以穿越。每个人都有不同的划船速度; 一对夫妇的速度取决于较慢速度的速度。你的工作是确定一个策略,尽量减少这些人遇到的时间。
输入
输入的第一行包含一个整数T(1 <= T <= 20),即测试用例的数量。然后是T个案例。每个案例的第一行包含N,第二行包含N个整数,给每个人穿越河流的时间。每种情况都有一个空白行。不会超过1000人,没有人需要超过100秒才能过关。
产量
对于每个测试案例,打印一行包含所有N人过河所需的总秒数的行。
示例输入
1
4
1 2 5 10
示例输出
17

#include <iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int main()
{
    int t,n,a[1005],i;
    scanf("%d",&t);
    while(t--)
    {
        int sum=0;
        scanf("%d",&n);
        for(i=0; i<=n-1; i++)
            scanf("%d",&a[i]);
        if(n==1)
            printf("%d\n",a[0]);
        else if(n==2)
        {
            if(a[0]>a[1])
                printf("%d\n",a[0]);
            else
                printf("%d\n",a[1]);
        }
        else
        {
            sort(a,a+n);
            if(n==3)
                printf("%d\n",a[2]+a[0]+a[1]);
            else
            {
                if(n%2==0)
                {
                    for(i=n-1; i!=1; i-=2)
                        sum+=min(a[1]+a[0]+a[i]+a[1],a[0]+a[i]+a[i-1]+a[0]);
                    sum+=a[1];
                }
                else
                {
                    for(i=n-1; i!=2; i-=2)
                        sum+=min(a[1]+a[0]+a[i]+a[1],a[0]+a[i]+a[i-1]+a[0]);
                    sum+=a[1]+a[0]+a[2];
                }
                printf("%d\n",sum);
            }
        }
    }
}

这是一个经典的贪心算法问题,可以使用贪心算法进行求解。首先,我们考虑一次船只能坐个人的情况,那么最开始的时候,我们需要将个用时最短的人先送到对岸。之后,我们需要将船划回来,将用时最短的人再次送到对岸。这样做的原因是,如果我们将用时最短的人留在原岸,那么他在对岸等待的时间会很长,而我们可以将这个时间分摊到船来回的途中,从而减少总用时。 接下来,我们考虑个人以上的情况。假设我们现在有若干人在原岸,其中最快的人用时为 t1,最慢的人用时为 tn。那么我们可以将最快的人和最慢的人先送到对岸,然后最快的人划船回来,将次快的人送到对岸,最慢的人划船回来,将次慢的人送到对岸,以此类推,直到所有人都到达对岸。这样做的原因是,我们希望在每次船来回的过程中,尽可能多地利用时间,从而减少总用时。 下面是使用 Python 实现的代码: ```python def min_time(t): n = len(t) if n <= 2: return max(t) t.sort() left, right = 0, n - 1 time = 0 while right - left > 2: if t[left] * 2 + t[right - 1] + t[right] < t[left] + t[left + 1] * 2 + t[right]: time += t[left] * 2 + t[right - 1] + t[right] left += 2 right -= 1 else: time += t[left] + t[left + 1] * 2 + t[right] left += 2 right -= 2 if right - left == 0: time += t[right] elif right - left == 1: time += max(t[left], t[right]) else: time += t[left] + t[left + 1] + t[left + 2] return time ``` 其中,`t` 为每个人过河所需时间的列表。首先,我们对列表进行排序,然后使用双指针的方法,将人群分为部分:一部分在原岸等待,一部分在对岸等待。每次我们从原岸选出用时最短的个人,将他们送到对岸,然后将较慢的那个人划船送回原岸。接着,我们从对岸选出用时最短的个人,将他们送回原岸,然后将较慢的那个人划船送回对岸。如此往复,直到所有人都到达对岸。 最后,我们根据最后一次船的情况,计算总用时。注意,当剩下的人数不足个时,我们需要特殊处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值