leeayu
码龄10年
关注
提问 私信
  • 博客:152,932
    社区:2
    问答:5,304
    158,238
    总访问量
  • 79
    原创
  • 31,187
    排名
  • 341
    粉丝
  • 1
    铁粉
  • 学习成就

个人简介:热爱机器人,主要兴趣:slam,机器人定位感知

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2014-11-12
博客简介:

leeayu的博客

博客描述:
stay hungry, stay foolish
查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    294
    当月
    2
个人成就
  • 获得315次点赞
  • 内容获得56次评论
  • 获得893次收藏
  • 代码片获得105次分享
创作历程
  • 18篇
    2024年
  • 3篇
    2022年
  • 7篇
    2021年
  • 4篇
    2020年
  • 16篇
    2019年
  • 28篇
    2017年
  • 3篇
    2015年
成就勋章
TA的专栏
  • ceres tutorial
    7篇
  • 状态估计
    11篇
  • lidar slam
    5篇
  • linux开发工具
    1篇
  • DeepLearning
    3篇
  • cs231n
    3篇
  • gcc
    1篇
  • git
    1篇
  • 点云算法
    3篇
  • pcl
    1篇
  • 图像处理
    1篇
  • lifelong slam
    1篇
  • MATLAB
    3篇
  • ROS
    2篇
  • C DataStructure & Alogorithm
    5篇
  • C++
    10篇
  • Algorithm
    9篇
  • 线性代数
    3篇
  • python
    1篇
  • 视觉slam14讲
    11篇
  • dip project
    1篇
兴趣领域 设置
  • 音视频
    opencv计算机视觉
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

观测维度过大的一种ceres求解优化思路

这个优化如此重要,以至于需要单列一个文章。
原创
发布博客 2024.08.07 ·
163 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

ceres::Problem求解最小二乘总结

专门解决最小二乘问题min⁡x12∑iρi∥fixi1xik∥2s.t.lj≤xj≤ujminx​s.t.​21​∑i​ρi​∥fi​xi1​​xik​​∥2lj​≤xj​≤uj​​public:// 在继承的类中实现Evaluate函数,填充残差和jabocian注意jacobian是残差对状态的导数,不一定是观测方程对状态的导数。如果残差定义为r。
原创
发布博客 2024.08.07 ·
663 阅读 ·
11 点赞 ·
0 评论 ·
8 收藏

ceres::GradientProblem求解一般最小化问题

注意在 GradientProblem的构造函数中可以传入参数的Manifold,用于更新非欧式空间的参数。对于一般的无约束最小化问题,使用。对应的cost function有。这个问题的一般最小化解法如下。
原创
发布博客 2024.08.06 ·
237 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

ceres中的NormalPrior cost function

但是在估计的过程中,你不希望这个参数随着给定的数据无所限制的进行更新,因为一旦某些数据是错的,这个估计值就会被错误带偏。如果我们提前进行了机械测量,值为。这个先验观测的实现如下,注意这个仅限于向量空间的状态估计,如果是SO3这种,需要自定义prior factor。,我们确信无论估计值如何变化,最终的估计值始终在机械测量值附近,那么这个机械测量值就是我们的先验观测。则我们的prior measurement构成的factor为。假设你想估计天线到imu的杆臂这个参数,定义为。
原创
发布博客 2024.08.05 ·
852 阅读 ·
8 点赞 ·
0 评论 ·
12 收藏

ceres多种方法求解非线性最小二乘问题

问题同。
原创
发布博客 2024.08.04 ·
263 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

手写高斯牛顿求解非线性最小二乘问题

【代码】手写高斯牛顿求解非线性最小二乘问题。
原创
发布博客 2024.08.04 ·
262 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

状态估计中的概率基础

高斯分布是一个理想的分布,在真实世界中,模型往往是非线性非高斯的,为了方便处理,我们经常在使用高斯分布来近似表示真实世界中的PDF的某个点。请注意公式⾥⾯的 p(x) 是概率密度(probability density)⽽不是概率(probability)。变形之后就是贝叶斯公式,这条公式在状态估计中会被反复使用,是最核心的公式,公式本身没有任何假设。计算高斯分布的变换的关键就是计算均值和协方差,直接按照公式去推导即可。P(y)的计算方式就是把x通过积分来边缘化掉的。的条件下的PDF如下。
原创
发布博客 2024.08.02 ·
1033 阅读 ·
18 点赞 ·
0 评论 ·
17 收藏

从零真正理解SLAM中的边缘化---------详细的理论细节推导

文章目录1 边缘化是什么2 实际SLAM中的优化问题构建2.1 线性高斯系统优化问题的构建(参考状态估计这本书,本节只是简介使得文章前后保持连续性)2.2 非线性非高斯系统(Non Linear Non Gaussian,NLNG)优化问题构建2.3 NLNG问题的Batch形式(实际SLAM优化多帧pose和多路标点的情况)2.4 使用高斯牛顿法求解2.5 考虑一个小的优化问题:仅包含观测模型3 边缘化(Marginalization)3.1 边缘化想做什么事情3.2 边缘化过程详细步骤(以VINS-MO
原创
发布博客 2024.08.01 ·
569 阅读 ·
7 点赞 ·
0 评论 ·
13 收藏

如何在基于滤波框架的绝对定位系统中融合相对观测

以无人驾驶定位系统为例,融合gnss,imu,轮速,camera LaneMatch(frame to map),lidar scan match(frame to map)。如何融合LIO、VIO这类帧间相对观测呢?本文讨论滤波框架下如何融合LIO,VIO相对观测。
原创
发布博客 2024.07.31 ·
170 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

MSCKF中的观测模型

这个地方使用QR分解来降低算法复杂度,参见。最后计算K的时候需要求解。
原创
发布博客 2024.07.31 ·
571 阅读 ·
20 点赞 ·
0 评论 ·
12 收藏

MSCKF里面的两个实用算法策略

以在无人车定位系统中融合GNSS,IMU,轮速,camera/lidar frame to map pose为例,想要在这个绝对定位系统中继续融合LO、VIO的relative pose该怎么做呢?(这里只考虑松耦合)
原创
发布博客 2024.07.31 ·
812 阅读 ·
24 点赞 ·
0 评论 ·
27 收藏

MSCKF中的camera状态增广

在MSCKF的状态增广公式中不考虑噪声R,所以协方差变换结果就是。是相机pose和imu pose的外参公式构成的非线性函数。对 imu error state的导数。考虑imu和camera之间的外参数。下图是来自《机器人学的状态估计》
原创
发布博客 2024.07.31 ·
299 阅读 ·
10 点赞 ·
0 评论 ·
4 收藏

矩阵常见分解算法及其在SLAM中的应用

酉矩阵,正交矩阵A的元素是属于复数域矩阵,如果AA∗IAA^{*} = IAA∗I,那么A是属于酉矩阵(Unitary Matrix)A的元素是属于实数域矩阵,如果AATIAA^{T} = IAATI,那么A是属于正交矩阵(Orthogonal Matrix),当然也是Unitary Matrix埃尔米特矩阵,对阵矩阵A的元素是属于复数域矩阵,如果AA∗A = A^{*}AA∗,那么A是属于埃尔米特矩阵(Hermitian Matrix)
原创
发布博客 2024.07.30 ·
891 阅读 ·
30 点赞 ·
0 评论 ·
17 收藏

理解全贝叶斯估计(Full Beyes Estimation)

【代码】理解全贝叶斯估计(Full Beyes Estimation)
原创
发布博客 2024.07.22 ·
169 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

ubuntu一些好用的开发工具及其配置

输入某命令,比如conda,按下ctrl+R,会显示和该命令匹配的历史命令的列表有了这个工具再也不用记忆太复杂的命令,只需要知道大概几个单词,输入即可搜索。其搜索源来自于 vim ~/.zsh_history, 这个文件被fzf工具创建,其会记录所有terminal输入过的命令。
原创
发布博客 2024.07.22 ·
504 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

deep learning 环境配置

(2)最重要的是在选择CUDA Installer时,要把Driver这一项取消掉([]中是空的表示没有选择安装这项,[x]表示有安装这项),因为第一步已经安装过NVIDIA驱动了。其中对于cuda的要求的11.1版本,所以需要按照这个版本要求安装下cuda,同时记得在bashrc中修改cuda bin、lib的path。进去网站 https://developer.nvidia.com/cuda-toolkit-archive 选择想要安装的cuda版本。
原创
发布博客 2024.07.10 ·
585 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

非递减有序数组搜索目标值左右边界

精髓:确定搜索区间是[ , ], 还是[ , )准确切换mid左右边界,正确返回candidate indexclass Solution {public: int countTarget(vector<int>& scores, int target) { const int left_bound = FindLeftBound(scores, target); const int right_bound = FindRightB
原创
发布博客 2024.06.27 ·
391 阅读 ·
5 点赞 ·
1 评论 ·
5 收藏

c++ copy constructor, copy assignment, move constructor, move assignment functions

【代码】c++ copy constructor, copy assignment, move constructor, move assignment functions。
原创
发布博客 2024.01.31 ·
249 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Lidar SLAM Review

lidar slam review
原创
发布博客 2022.11.14 ·
43 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

二分搜索查找边界

二分搜索查找边界
原创
发布博客 2022.11.14 ·
153 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏
加载更多