Yolov5m可视化网络结构图

Yolov5共有四种网络结构,每种网络深度和宽度上都不相同。
(1) Yolov5s可视化网络结构图:点击查看
(2) Yolov5m可视化网络结构图:点击查看
(3) Yolov5l可视化网络结构图:点击查看
(4) Yolov5x可视化网络结构图:点击查看

此外也放上Yolov3Yolov4的网络结构,可以对比查看:
(1) Yolov3的可视化网络结构图:点击查看
(2) Yolov4的可视化网络结构图:点击查看

但最好的方式,还是使用netron工具打开cfg文件或者Yolov5的onnx文件,可以看到网络的各个细节,因此也放上下载链接,和大白画得网络结构图一起查看,思路更加清晰:
(1) 大白的另一篇文章《网络可视化工具netron详细安装流程》:点击查看
(2) Yolov3&Yolov4&Yolov5网络权重及高清网络结构图下载:点击查看
在这里插入图片描述

### 实现YOLOv5 BN模型的可视化训练 为了实现YOLOv5批量归一化(Batch Normalization, BN)层的可视化训练,可以利用多种工具和技术来完成这一任务。以下是具体方法: #### 使用TensorBoard进行BN层可视化 尽管存在一些挑战[^2],仍然可以通过调整配置使TensorBoard成功用于BN层的可视化。 1. **安装依赖** 确保环境中已正确安装`tensorboard`及相关依赖项。如果遇到版本冲突问题,如protobuf版本不一致的情况,则需解决环境兼容性问题[^4]。 ```bash pip install tensorboard protobuf==3.20.2 ``` 2. **修改代码以支持日志记录** 在YOLOv5项目中适当位置加入如下Python代码片段以便于收集BN层统计信息并将其写入TensorBoard日志目录下。 ```python from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter('runs/exp') def log_bn_stats(module, name='bn'): """Log batch normalization statistics to TensorBoard.""" if isinstance(module, nn.BatchNorm2d): writer.add_histogram(f'{name}.weight', module.weight.data.cpu().numpy()) writer.add_histogram(f'{name}.bias', module.bias.data.cpu().numpy()) writer.add_scalar(f'{name}.running_mean', module.running_mean.mean(), global_step=epoch) writer.add_scalar(f'{name}.running_var', module.running_var.mean(), global_step=epoch) for m in model.modules(): log_bn_stats(m) ``` 上述脚本会在每次迭代结束时更新一次直方图和标量图表,从而允许观察整个训练过程中BN参数的变化趋势。 3. **启动TensorBoard服务** 通过命令行启动TensorBoard服务器,并指向保存的日志路径查看实时变化情况。 ```bash tensorboard --logdir runs/ ``` 访问浏览器中的指定URL即可浏览到详细的BN层统计数据图形展示界面。 #### 利用Netron进行静态结构分析 除了动态监控外,还可以借助Netron这样的第三方软件来进行更深入的网络架构解析工作[^3]。 - 将训练完毕后的`.pt`文件转换成ONNX格式; ```python import torch.onnx as onnx dummy_input = torch.randn(1, 3, 640, 640).to(device) torch.onnx.export(model, dummy_input, "model.onnx", opset_version=11) ``` - 打开Netron应用加载导出的ONNX模型文件,直观地探索内部各组件连接关系及其属性详情。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值