POJ2151 Check the difficulty of problems

36 篇文章 0 订阅

Description

Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms: 
1. All of the teams solve at least one problem. 
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems. 

Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem. 

Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems? 

Input

The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.

Output

For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.

Sample Input

2 2 2
0.9 0.9
1 0.9
0 0 0

Sample Output

0.972


概率+DP。

DP搞出来几次WA都是栽在计算概率的正确性上了。

碰巧给的例子对错误的计算也能给出正确解答。

概率P1 = 所有的队伍都解答对了至少一题。

概率P2 = 所有的队伍的解答题数都在1到N-1题之间。

这样要求的概率解为P1-P2。

数组p[i][j][k] 表示 第i支队伍前j道题目解答出k题。

这样队伍 i 解答对了至少一题的概率A[i] = p[i][M][1]+p[i][M][2]+...+p[i][M][M]。

队伍 i 解答题数在1到N-1之间概率B[i] = p[i][M][1]+p[i][M][2]+....+p[i][M][N-1]。

P1 = A[1]*A[2]*...*A[T]。

P2 = B[1]*B[2]*...*B[T]。


#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <list>
#include <set>
#include <time.h>
#include <string.h>
#include <string>
#include <iostream>
#include <map>
using namespace std;

#define M 31
#define T 1010

int m,t,n;
double p[T][M];
double f[T][M][M];
vector<double> res;


void process(){
	double p_zero = 1;
	double p_less = 1;
	for(int i=1;i<=t;++i){
		f[i][0][0] = 1;
		for(int j=1;j<=m;++j)
			f[i][j][0] = f[i][j-1][0]*(1-p[i][j]);
		double sum1=0;
		double sum2=0;
		for(int k=1;k<=m;++k){
			for(int j=1;j<=m;++j){
				f[i][j][k] = f[i][j-1][k-1]*p[i][j] + f[i][j-1][k]*(1-p[i][j]);
			}
			sum1 += f[i][m][k];
			if(k<n)
				sum2 += f[i][m][k];
		}
		p_zero *= sum1;
		p_less *= sum2;
	}
	res.push_back(p_zero-p_less);
}

int main(){
	while(true){
		scanf("%d %d %d",&m,&t,&n);
		if(m==0 && t==0 && n==0)
			break;
		for(int i=1;i<=t;++i){
			for(int j=1;j<=m;++j)
				scanf("%lf",&p[i][j]);
		}
		process();
	}
	for(int i=0;i<res.size();++i)
		printf("%.3f\n",res[i]);
	//system("pause");
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值