也是bellman算法的一个应用。M为双向正边。W为单向负权值边。
总的边数= 2M+W。
不需要求节点间最短路径,只需要求是否该图含有负的环路。
所以初始化只需将所有节点置为最大值。不需要指定一个源点并初始化为0。这里也并没有源点。
如有负环则返回YES。
#include <iostream>
#include <string.h>
using namespace std;
struct Edge{
int A;
int B;
int time;
};
int N,M,W;
Edge edges[5200];
int num_edges;
int d[501];
bool bellman(){
for(int i=1;i<=N;++i)
d[i] = 10001;
for(int i=1;i<N;++i){
for(int j=0;j<num_edges;++j){
int t = d[edges[j].A]+edges[j].time;
if(d[edges[j].B] > t)
d[edges[j].B] = t;
}
}
for(int j=0;j<num_edges;++j)
if(d[edges[j].B] > d[edges[j].A]+edges[j].time)
return true;
return false;
}
int main(){
int F;
cin>>F;
while(F--){
num_edges = 0;
cin>>N>>M>>W;
int S,E,T;
for(int i=0;i<M;++i){
cin>>S>>E>>T;
edges[num_edges].A = S;
edges[num_edges].B = E;
edges[num_edges].time = T;
++num_edges;
edges[num_edges].A = E;
edges[num_edges].B = S;
edges[num_edges].time = T;
++num_edges;
}
for(int i=0;i<W;++i){
cin>>S>>E>>T;
edges[num_edges].A = S;
edges[num_edges].B = E;
edges[num_edges].time = -T;
++num_edges;
}
if(bellman())
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
}
return 0;
}