import cv2 from imageio import imread import json import numpy as np # Feature extractor # 特征提取器 def extract_features(image_path, vector_size=2048): image = imread(image_path) #image = cv2.resize(image, (128,128), interpolation=cv2.INTER_AREA) #image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) try: # Using KAZE, cause SIFT, ORB and other was moved to additional module # which is adding addtional pain during install # 此处为了简化安装步骤,使用KAZE,因为SIFT/ORB以及其他特征算子需要安 # 装额外的模块 alg = cv2.xfeatures2d.SIFT_create() # Finding image keypoints # 寻找图像关键点 kps = alg.detect(image) print('kps: ' + str(len(kps))) # Getting first 32 of them. # 计算前32个 # Number of keypoints is varies depend on image size and color pallet # 关键点的数量取决于图像大小以及彩色调色板 # Sorting them based on keypoint response value(bigger is better) # 根据关键点的返回值进行排序(越大越好) kps = sorted(kps, key=lambda x: -x.response)[:vector_size] print('kpssorted: ' + str(len(kps))) print(kps) # computing descriptors vector # 计算描述符向量 kps, dsc = alg.compute(image, kps) # Flatten all of them in one big vector - our feature vector # 将其放在一个大的向量中,作为我们的特征向量 #dsc = dsc.flatten() dsclist=[] for keydsc in dsc: score=0 #print(keydsc) for dscitem in keydsc: score = score + dscitem dsclist.append(score/5120) print('dsclist: ' + str(len(dsclist))) print(dsclist) # Making descriptor of same size # 使描述符的大小一致 # Descriptor vector size is 64 # 描述符向量的大小为64 with open("/Users/zdwh/Documents/bak/feature/img", 'w') as fp: fp.write(str(kps)) needed_size = (vector_size * 64) # if dsc.size < needed_size: # # if we have less the 32 descriptors then just adding zeros # # at the end of our feature vector # # 如果少于32个描述符,则在特征向量后面补零 # dsc = np.concatenate([dsc, np.zeros(needed_size - dsc.size)]) # img = cv2.drawKeypoints(image=image, # outImage=image, # keypoints=kps, # color=(51, 163, 236), # flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) #显示图像 # cv2.imshow('sift_keypoints', img) # while (True): # if cv2.waitKey(int(1000 / 12)) & 0xFF == ord('q'): # break # cv2.destroyAllWindows() dist1 = 1 - np.dot(dsclist, dsclist) / (np.linalg.norm(dsclist) * np.linalg.norm(dsclist)) print('dist1: ') print(dist1) except cv2.error as e: print 'Error: ', e return None return dsclist def batch_extractor(pickled_db_path="/Users/zdwh/Documents/bak/feature/siftim"): for index in range(1, 4): f='/Users/zdwh/Documents/bak/img/img'+str(index)+'.jpg' name = '1img' dic = {} extract_sift= extract_features(f) dic['feature'] = extract_sift#.tolist() dic['hash'] = index dic['itemId'] = index dic['topimages'] = index dicJson = json.dumps(dic) #result[name] = extract_features(f) # saving all our feature vectors in pickled file # 将特征向量存于pickled 文件 with open(pickled_db_path+str(index)+".txt", 'w') as fp: fp.write(dicJson) images_path = '' batch_extractor()
提取sift特征
最新推荐文章于 2022-12-24 19:48:14 发布