最近开通了一个公众号,里面会分享一些机器学习,推荐系统的学习笔记和相关知识,同时也会分享一些面经,感兴趣的小伙伴可以关注一下,十分感谢,比心
K-Mneans算法是常见,常用,常考的算法,因此这里做个笔记,多多复习。
k-means算法的主要流程
1.根据需求,初始化k个中心点
2.为每个样本点计算他们和k个中心点的距离,找到距离最近的中心点,即该样本就属于这个中心点所代表的的类
3.做完2后,就已经对样本做了一次分类了,接着计算每个类别中的样本点的均值,用这些均值代替原来的k个样本点。
4.重复2,3知道满足一些条件(迭代次数,误差大小等)。
距离有多种计算方法:距离度量的不同方法可以参考我的另一篇博客https://blog.csdn.net/naocanmani/article/details/108907917
k-means的优缺点:
优点
1.实现简单,容易理解,效果还行
2.处理大数据是可伸缩性强
3.簇近似高斯分布时,效果比较好。(?为什么,有大佬的话可以在评论去解释一下)
缺点
1.k值的指定是人为的,需要经验或先验知识。
2.k个中心需要人为指定,对初始中心敏感,初始化的好坏对最终的聚类效果有较大影响。
3.对异常值,离群值敏感,容易受其影响。
4.不适合发现非凸形状的簇或者大小差别较大的簇。
k-means的改进版
二分kmeans
解决kmeans对初始中心比较敏感的问题
流程:
1.一开始所有样本是一个簇,将当前簇放到队列中
2.取出队列中的一个簇,将其聚类为两个簇,放入队列中
3.重复2,直到终止条件(簇的个数,误差大小,迭代次数等)
2中选择一个簇的方式:a.选择样本最多的簇进行聚类
b. 对所有簇计算误差和SSE(SSE也可以认为是距离函数的一种变种),选择SSE最大的聚簇进行划分操作(优选这种策略);
k-means++
k-means++与k-means的区别在于选取中心点的方法上。k-means是直接随机生成,k-means++则是:
1.从数据集中随机选择一个点作为中心点
2.计算样本与每个已知中心点的距离,计算该样本到不同中心点的距离和,然后找到M个与已知的中心相聚较远的点。
3.从M个样本中随机选择一个点为中心。不直接选最远的是因为最远的样本点可能是异常点
缺点:第k个中心的选择依赖前k-1个中心
mini batch k-means
顾名思义,采用mini batch的方式进行训练。收敛速度比k-means快。精度略逊于k-means。
- 首先抽取部分数据集,使用K-Means算法构建出K个聚簇点的模型;
- 继续抽取训练数据集中的部分数据集样本数据,并将其添加到模型中,分配给距离最近的聚簇中心点;
- 更新聚簇的中心点值;
- 循环迭代第二步和第三步操作,直到中心点稳定或者达到迭代次数,停止计算操作。
最近开通了一个公众号,里面会分享一些机器学习,推荐系统的学习笔记和相关知识,同时也会分享一些面经,感兴趣的小伙伴可以关注一下,十分感谢,比心
参考