极大似然估计定义及例题

一、极大似然估计定义

  实际上就是说,我们在总体中抽取样本,我们希望在样本中发生的情况最大化,用在样本中发生的情况去估计总体中发生情况。 

二、例题

注意:对分布函数求导得概率密度函数 

三、参考书目

茆诗松, 周纪芗等. 概率论与数理统计 (第三版). 中国统计出版社, 2007

王松桂等. 概率论与数理统计 (第三版). 科学出版社, 2011

同济大学数学系.概率论与数理统计.人民邮电出版社, 2017

### 极大似然估计计算示例 极大似然估计是一种用于参数估计的方法,其核心思想是在给定观测数据的情况下找到使得该组数据出现可能性最大的模型参数值。 考虑一个简单的例子:设有一个未知均值 \(\mu\) 和已知方差 \(\sigma^2=1\) 的正态分布 \(N(\mu, 1)\),从中独立抽取了三个样本点\(X_1,X_2,X_3\), 值分别为5.0、6.0和9.0。现在要基于这些样本来估算总体的均值 \(\mu\) [^1]。 为了求解这个问题: - **构建似然函数** 对于单个观察值 \(x_i\) 来说,在给定参数 \(\theta=\{\mu,\sigma^2\}\) 下的概率密度可以表示为: \[f(x|\mu)=\frac{1}{\sqrt {2\pi}}e^{-\frac{(x-\mu)^2}{2}}\] 由于各个样本之间相互独立,则联合概率即为各单独事件发生的概率相乘得到整体发生这三件事的可能性——也就是所谓的“似然”。因此整个样本集对应的似然是: \[L(\mu|x_1,x_2,...,x_n)=\prod_{i=1}^{n} f(x_i | \mu ) = (\frac{1}{\sqrt {2\pi}})^ne^{-\sum^n_{i=1}(x_i - \mu)^2 / 2 }\] 在这个特定的例子中 n=3 并且 \(\sigma ^2=1\) 已经固定下来了所以不需要再作为变量处理 . - **简化对数似然并求导** 通常我们会转而优化更方便操作的形式—取自然对数后的版本 ln(L): \[\ln L=-\frac{n}{2}\log (2\pi)-\frac{1}{2}\sum _{{i=1}}^{n}(x_{i}-\mu )^{2}\] 接着对该表达式关于待估参数μ求偏导数,并令结果等于零来找出可能存在的极值点: \[\partial {\ln L}/\partial {\mu }=\sum _{{i=1}}^{n}(x_{i}-\mu )=0\] 从而得出最优解 \({\hat {\mu }}=(x_1+x_2+...+x_n)/n\) 代入具体数值可得最终的最大似然估计量为 \((5 + 6 + 9)/3 = 6.67\) . ```python import numpy as np # Sample data points from the normal distribution N(mu, sigma^2) samples = [5.0, 6.0, 9.0] sample_mean = sum(samples) / len(samples) print(f"The MLE estimate of mu is approximately: {sample_mean:.2f}") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑子不好真君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值