一、连续函数的和、差、积、商的连续性
定理 1
二、反函数与复合函数的连续性
定理2
例2
定理3
定理3的证明
例3
定理4
定理4的证明
例4
三、初等函数的连续性
基本初等函数在它们的定义域内都是连续的
推导xᵘ =a^ulogₐx
注意(logₐx)^u ≠ logₐ(xu)
幂函数可视化
一切初等函数在其定义区间内都是连续的
总结归纳
这个结论的实际意义在于:对于初等函数来说,只要知道函数在某点连续,计算该点的极限就可以直接代入计算函数值,而不需要使用更复杂的极限运算方法。这大大简化了初等函数的极限计算。
例5
对①过程的解释
我对①非常疑问,实际上它的过程如下,但为什么loga能提出来,或者说为什么lim能进去?下面介绍一个定理:
连续函数复合极限定理
证明方式可参考:https://math.stackexchange.com/questions/2679894/what-is-the-proof-behind-lim-fgx-f-lim-gx