高等数学-第七版-上册-第一章函数与极限——第九节 连续函数的运算与初等函数的连续性

一、连续函数的和、差、积、商的连续性

定理 1

二、反函数与复合函数的连续性

定理2

例2

定理3

定理3的证明

例3

定理4

定理4的证明

例4

三、初等函数的连续性

基本初等函数在它们的定义域内都是连续的

推导xᵘ =a^ulogₐx

注意(logₐx)^u ≠ logₐ(xu)

幂函数可视化

一切初等函数在其定义区间内都是连续的

总结归纳



这个结论的实际意义在于:对于初等函数来说,只要知道函数在某点连续,计算该点的极限就可以直接代入计算函数值,而不需要使用更复杂的极限运算方法。这大大简化了初等函数的极限计算。

例5


对①过程的解释

我对①非常疑问,实际上它的过程如下,但为什么loga能提出来,或者说为什么lim能进去?下面介绍一个定理:

连续函数复合极限定理



证明方式可参考:https://math.stackexchange.com/questions/2679894/what-is-the-proof-behind-lim-fgx-f-lim-gx

对②过程的解释 

例6


例7

★由例5、例6、例7总结得下列三个常用的等价无穷小关系式

例8

习题 1-9

1.

★这里回顾一下第八节-函数的连续性与间断性中的间断点的三种情况


2.

为什么max{f(x),g(x)}=1/2​[f(x)+g(x)+∣f(x)−g(x)∣]?

3.






4.








5. 

6.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑子不好真君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值