Paper地址:https://arxiv.org/pdf/2111.10007
前言
网络结构搜索(NAS:Neural Architecture Search),主要的Motivation有两点:
- 针对特定任务与部署平台,设计精度与速度折中最佳的模型结构;
- 实现结构设计或搜索的自动化,减轻人工成本与计算资源开销,以提升生产效率;
但影响NAS方法可泛化、普遍应用的主要原因包括:
- 当前NAS工作主要聚焦于图像分类任务,并认为适用于图像分类的最佳模型,也能成为其他任务(如检测、分割等)的最佳Backbone。然而这一假设有失偏颇,容易导致迁移应用的次优化;
- 有些NAS方法仅优化任务相关的组件,而对其他任务没有助益。例如NAS-FCOS仅对该网络涉及的FPN等组件进行结构优化,但较难应用于其他任务;
- 主流NAS方法都采用Proxyless方式(例如ProxylessNAS、FBNetV1等),需要将NAS集成至目标任务的训练Pipeline当中,因而需要花费较大的Engineering effort。当NAS方法涉及Supernet预训练时,则在不同的目标任务上执行参数共享式训练,存在一定的转换成本;
FBNetV5是沿袭FBNet系列的NAS方法,仅需一次搜索,便能够同时为不同的任务搜索相应的最佳网络结构:
- 针对多任务搜索,主要面向图像分类、目标检测与语义分割这三个CV任务,基于FBNetV3模型构建了超网络。该超网络包含多个并行分支,能够满足多种分辨率、多种网络结构(Vanilla、FPN、UNet等类型)的搜索,以适应不同CV任务对特征计算/抽象的实际需求;<