自动搜索算法-FBNet

上面的案例,仅仅考虑了准确率的问题。

但是对于移动端部署的模型,虽然仅仅推理,但是不能仅仅推理几次,就没电了。

因此,设备端应用,要考虑计算量的问题,需要权衡计算量和准确率。

下面介绍,在搜索神经网络的时候,考虑到计算量。

推理时间:latency.最好几百ms。

NN搜索时考虑到latency,希望小的latency,达到近似的精度。

做NN搜索,选出CNN的最优参数,然后训练CNN,部署到iphone12.

不同的block有不同的latency,因此需要事前知道不同的block的latency。

假设,每个block在iphone12上,计算100次,获取平均时间。

记录每一层中,每个模块的平均latency.

然后计算latency的加权平均。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值