dify之Web 前端工作流编排(Workflow Builder)

Dify前端工作流编排解析

Dify 的 Web 前端工作流编排(Workflow Builder) 是整个平台里最复杂、也是最具创新性的部分之一。

下面是一个完整、深入但清晰的技术分析👇:


🧩 一、工作流编排的核心定位

Dify 的“工作流编排”模块(Workflow Builder)是可视化拖拽式的流程设计器,允许用户在网页上像画流程图一样组装 LLM 应用逻辑

它实现了:

  • 拖拽节点(Node)
  • 节点间连线(Edge)
  • 参数设置面板(Properties Panel)
  • 实时预览与执行
  • 流程的保存、发布、执行回调

🧠 二、技术栈概览(前端部分)

模块技术
框架基础React + TypeScript
UI组件库TailwindCSS + Radix UI + Shadcn/UI
工作流可视化引擎🧩 React Flow(核心)
状态管理Zustand / React Query
构建工具Vite
代码组织Monorepo(基于 pnpm workspace)
国际化i18next
通信REST + WebSocket(实时运行状态)

🔧 三、核心依赖:React Flow

Dify 前端工作流界面使用了 React Flow —— 一个专门用于构建可视化流程图编辑器的 React 库。
它支持:

  • 拖拽节点、缩放、平移
  • 自定义节点类型(例如:LLM 节点、Tool 节点、条件判断节点等)
  • 连线事件与动态计算
  • 节点状态(运行中、错误、完成)可视化

🔗 官方库地址: https://reactflow.dev/

在 Dify 中,你会看到类似以下结构:

web/
 ├─ app/
 │   ├─ components/workflow/
 │   │   ├─ index.tsx          ← 工作流主入口
 │   │   ├─ node-types/        ← 自定义节点组件(LLM、HTTP、Condition 等)
 │   │   ├─ edges/             ← 自定义连线样式与逻辑
 │   │   ├─ store.ts           ← Zustand 状态管理
 │   │   ├─ useWorkflow.ts     ← 流程逻辑 Hooks
 │   │   └─ ...
 │   └─ pages/workflow/        ← 页面布局
 ├─ shared/
 │   ├─ api/                   ← 与后端交互
 │   ├─ ui/                    ← 通用UI组件(如 Modal、Sidebar、Tabs)

🧱 四、运行机制(前端层面)

简化流程如下:

  1. 用户拖拽节点

    • React Flow 负责渲染与节点管理;
    • 新节点定义写入 Zustand 全局 store。
  2. 节点参数配置

    • 点击节点 → 打开右侧属性面板;
    • 参数编辑后写入 store;
    • 实时校验。
  3. 连线逻辑

    • React Flow 提供 onConnect() 事件;
    • 保存连线关系,更新 DAG(有向无环图)结构。
  4. 保存/发布

    • 前端序列化工作流(节点 + 连线 + 参数);
    • 通过 API 调用后端(/api/workflows)保存。
  5. 执行可视化

    • 运行时通过 WebSocket 获取后端执行状态;
    • 动态高亮节点、显示输出结果。

🧩 五、前后端交互

功能前端调用后端模块
保存工作流POST /api/workflowsdify/server/workflow/
加载工作流GET /api/workflows/:id
执行工作流POST /api/workflows/:id/executeCelery 异步任务
实时状态WebSocket /ws/workflows/:idFastAPI WebSocket 通道

💡 六、React Flow + 自定义节点举例

例如一个“LLM 调用节点”前端定义结构:

import { Handle, Position } from 'reactflow'

export default function LLMNode({ data }) {
  return (
    <div className="p-3 rounded-2xl bg-white shadow-sm border">
      <div className="font-semibold text-sm mb-2">LLM Node</div>
      <div className="text-xs text-gray-500">Model: {data.model}</div>

      <Handle type="target" position={Position.Left} />
      <Handle type="source" position={Position.Right} />
    </div>
  )
}

这类自定义节点在 Dify 中以多种形式存在:

  • Input node
  • LLM node
  • Tool node
  • Condition node
  • Output node
  • HTTP Request node

🔍 七、总结

维度技术说明
核心框架React + TypeScript
UI 框架TailwindCSS + Shadcn/UI
工作流引擎React Flow
状态管理Zustand
后端交互REST / WebSocket
执行引擎(后端)Python + Celery + FastAPI
主要文件目录/web/app/components/workflow/

🚀 八、可扩展方向(如果你想二开)

  • 新增节点类型:在 node-types/ 目录增加组件 + 注册节点类型;
  • 定制参数面板:扩展右侧属性表单;
  • 接入自定义 API:修改工作流执行时序;
  • 样式/布局修改:调整 React Flow 配置项(如 snap-to-grid、mini-map 等)。

在这里插入图片描述

### 使用 Dify 进行聊天助手工作流编排 Dify 是一种基于大语言模型 (LLM) 的工具,旨在帮助开发者快速构建和部署定制化的 AI 应用程序。通过其强大的 API 和灵活的工作流设计能力,可以实现复杂业务逻辑的自动化处理[^1]。 #### 工作流编排的核心概念 工作流编排是指将多个独立的任务按照一定的顺序组合起来,形成一个完整的流程。对于像 Dify 这样的平台来说,它支持多种方式来定义这些任务之间的关系以及触发条件。例如: - **事件驱动型**:当某个特定事件发生时启动下一个操作。 - **状态机模式**:依据当前系统的状态决定下一步执行什么动作。 以下是利用 Dify 实现聊天机器人工作流的一些关键技术点[^2]: #### 配置环境与初始化项目 要开始使用 Dify 创建自己的聊天助手并设置相应的工作流,首先需要完成基本配置: ```bash pip install dify-cli dify init my-chatbot-project cd my-chatbot-project ``` 上述命令会安装必要的 CLI 客户端,并创建一个新的工程文件夹 `my-chatbot-project`。 #### 设计对话节点 每一个对话环节都可以看成是一个单独的节点,在这里你可以指定输入参数、输出结果还有可能涉及的动作列表。比如验证用户身份或者查询数据库记录等具体功能都可作为单个节点存在。 假设我们希望构建这样一个简单的场景——先问候访客再询问他们想要购买的商品类别最后推荐相关产品,则可以用 JSON 格式描述如下结构: ```json { "nodes": [ { "id": "greet", "type": "action", "name": "Greeting Visitor", "params": {"message": "Hello! How can I assist you today?"} }, { "id": "ask_category", "type": "input", "name": "Asking Category Preference", "prompt": "What kind of product are you interested in?" } ], "edges": [{"from":"greet","to":"ask_category"}] } ``` 这段代码片段展示了两个相连的节点:“打招呼”之后紧接着就是“提问偏好”。实际应用当中还可以加入更多复杂的分支判断逻辑以满足不同需求。 #### 测试运行效果 一旦完成了整个架构的设计图谱以后就可以将其上传至云端服务器上测试实际表现情况了。通常情况下只需要简单几步就能看到初步成果展示出来。 ```python import requests response = requests.post( url='https://api.dify.com/v1/workflows/run', headers={'Authorization': 'Bearer YOUR_ACCESS_TOKEN'}, json={ "workflow_id": "<your_workflow_identifier>", "inputs": {} } ) print(response.json()) ``` 以上 Python 脚本发送 POST 请求给远程服务端口从而激活预设好的脚本序列并且打印返回的数据包内容以便进一步分析调整优化性能指标等方面考虑因素进去其中去完善最终版本发布上线供大众访问体验良好程度达到预期目标为止.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值