熵权法原理及应用

熵权法是一种基于数据的权重确定方法,源自信息熵的概念,用于衡量指标的离散程度。它具有客观性强、计算简单的优点,但未考虑指标间相关性。适用于指标间相关性弱且需初步确定权重的场景,通常需先进行数据标准化处理。
摘要由CSDN通过智能技术生成

熵权法原理及应用

一、熵权法简述

:起源于物理学,表示物质微观热运动时的混乱程度,在信息论中是衡量系统无序程度度量值。
熵权法:根据信息熵的定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其信息熵值越小,指标的离散程度越大, 该指标对综合评价的影响(即权重)就越大,如果某项指标的值全部相等,则该指标在综合评价中不起作用。因此,可利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据。
结合熵权法的定义可知,其属于一种来自数据本身的权重确定方法,所以又被称为“客观赋权法”。基础原理是“指标离散程度越大,权重越大”。

二、熵权法优缺点及应用范围

优点:
1.熵权法确定权重依据来自数据本身,客观性强,减少了主观性对决策结果的影响。
2.熵权法计算逻辑简单清晰,操作性较好,易于实现。
缺点
1.熵权法将不同指标看作独立存在,未考虑指标间的相关性,容易出现权重分配不合理的情况。
2.熵权法完全取决于数据本身,计算得出的权重往往难以直接应用到实际中,需要进行一定调整。
应用范围:
1.适合应用于指标间相关性较弱的数据;
2.适合作为基础权重确定方法;
3.若指标量纲相差较大时,需要进行标准化处理。

三、熵权法计算步骤

1.构建指标体系,确定指标矩阵X=[X1,X2,,,Xn].

在这里插入图片描述其中,每一列为一个指标,每一行为一个个体在不同指标的取值。图中所示共n个指标,m个个体。

2.对初始指标矩阵X进行标准化(归一化)处理,得到标准化指标矩阵Z。

在这里插入图片描述以上为指标标准化处理方法,处理后得到标准化矩阵Z。
在这里插入图片描述其中,每个元素Zij均为0-1之间的值。

3.计算每个指标的熵值Hj;
在这里插入图片描述
在这里插入图片描述
4.根据熵值计算熵权
在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值