熵权法 —— matlab

目录

一、熵权法介绍

二、熵权法赋权步骤

1.指标正向化

mapminmax介绍

2.数据标准化

3.计算信息熵

4.计算权重以及得分

三、实例分析

1.读取数据

2.指标正向化

2.1 越小越优型处理

2.2 某点最优型指标处理

3.数据标准化

4.计算信息熵

5.计算权重

6.计算得分

总结


一、熵权法介绍

熵权法是一种客观赋值方法。在具体使用的过程中,熵权法根据各指标的变异程度,利用信息熵计算出各指标的熵权,再通过熵权对各指标的权重进行修正,从而得到较为客观的指标权重。

一般来说,若某个指标的信息熵指标权重确定方法之熵权法越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。

相反,若某个指标的信息熵指标权重确定方法之熵权法越大,表明指标值得变异程度越小,提供的信息量也越少,在综合评价中所起到的作用也越小,其权重也就越小。

二、熵权法赋权步骤

1.指标正向化

这个步骤视情况自己决定把。。。。

        不同的指标代表含义不一样,有的指标越大越好,称为越大越优型指标。有的指标越小越好,称为越小越优型指标,而有些指标在某个点是最好的,称为某点最优型指标。为方便评价,应把所有指标转化成越大越优型指标。

设有m个待评对象,n个评价指标,可以构成数据矩阵 

设数据矩阵内元素,经过指标正向化处理过后的元素为  (Xij)'

  • 越小越优型指标:C,D属于此类指标

其他处理方法也可,只要指标性质不变即可

  • 某点最优型指标:E属于此类指标

        设最优点为a, 当a=90时E最优。

          其他处理方法也可,只要指标性质不变即可

  • 越大越优型指标:其余所有指标属于此类指标

   此类指标可以不用处理,想要处理也可,只要指标性质不变

mapminmax介绍

最大最小值归一化

语法

[Y,PS] = mapminmax(X,YMIN,YMAX)
[Y,PS] = mapminmax(X,FP)
Y = mapminmax('apply',X,PS)
X = mapminmax('reverse',Y,PS)

说明:

[Y,PS] = mapminmax(X,YMIN,YMAX)

评论 59
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值