目录
一、熵权法介绍
熵权法是一种客观赋值方法。在具体使用的过程中,熵权法根据各指标的变异程度,利用信息熵计算出各指标的熵权,再通过熵权对各指标的权重进行修正,从而得到较为客观的指标权重。
一般来说,若某个指标的信息熵指标权重确定方法之熵权法越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。
相反,若某个指标的信息熵指标权重确定方法之熵权法越大,表明指标值得变异程度越小,提供的信息量也越少,在综合评价中所起到的作用也越小,其权重也就越小。
二、熵权法赋权步骤
1.指标正向化
这个步骤视情况自己决定把。。。。
不同的指标代表含义不一样,有的指标越大越好,称为越大越优型指标。有的指标越小越好,称为越小越优型指标,而有些指标在某个点是最好的,称为某点最优型指标。为方便评价,应把所有指标转化成越大越优型指标。
设有m个待评对象,n个评价指标,可以构成数据矩阵
设数据矩阵内元素,经过指标正向化处理过后的元素为 (Xij)'
-
越小越优型指标:C,D属于此类指标
其他处理方法也可,只要指标性质不变即可
-
某点最优型指标:E属于此类指标
设最优点为a, 当a=90时E最优。
其他处理方法也可,只要指标性质不变即可
-
越大越优型指标:其余所有指标属于此类指标
此类指标可以不用处理,想要处理也可,只要指标性质不变
mapminmax介绍
最大最小值归一化
语法
[Y,PS] = mapminmax(X,YMIN,YMAX)
[Y,PS] = mapminmax(X,FP)
Y = mapminmax('apply',X,PS)
X = mapminmax('reverse',Y,PS)
说明:
[Y,PS] = mapminmax(X,YMIN,YMAX)