1.模糊综合评价概述
模糊综合评价法是一种基于模糊数学的综合评价方法,它根据模糊数学的隶属度理论,将定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象作出一个总体的评价。该方法具有结果清晰、系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。在模糊综合评价中,通常分有目标层和指标层,通过指标层与评价集之间的模糊关系矩阵(即隶属度矩阵)可以得到目标层对于评价集的隶属度向量,从而得到目标层的综合评价结果。
2.模糊综合评价实现步骤:
(1)确定因素集
因素集指的是指标,就是一件事物的各个方面,比如一个人的身高、体重、样貌、品行等;确定因素集就是确定指标体系,确定从哪几个方面展开综合评价。
(2)确定评语集
评语集指的是对因素的评价结果,比如一个人的身高是高、中等、矮,确定评语集就是确定各项指标的取值,用于衡量单方面结果。
(3)确定该因素的权重
权重指的就是指标权重,也是因素集权重,确定方法可参考之前的层次分析法、熵权法等。
层次分析法
熵权法原理及应用
(4)确定模糊综合判断矩阵
以因素集为行,评语集为列,组建模糊综合判断矩阵。
(5)综合评价
将各因素权重乘以模糊综合判断矩阵,得出各因素综合评价结果,以得分最高的为最终综合评价。
3.模糊综合评价实例
某支部对新入党员开展群众意见考核
第一步:确定因素集
对党员的表现,需要从多个方面进行综合评判,如党员的工作方面、生活方面、思想方面、政治表现等。所有这些因素构成了评价指标体系集合,即因素集,记为:U = u1 , u2 , ⋯ un 。
注意:一级模糊评价中,n 往往较小(一般 ≤ 5)且 指标间相关性不强。
取因素集:U = {工作方面u1,生活方面u1,思想方面u3,政治表现u4 }
第二步:确定评语集
由于每个指标的评价值的不同,往往会形成不同的等级。如对工作方面的评价有好、较好、中等、较差、很差等。由各种不同决断构成的集合称为评语集,记为:V = v1 , v2 ,⋯, vm。
注意:这里评语集中有 m 个元素,m 与 n 无关。
取评语集:V={优秀v1,良好v2,一般v3,较差v4,很差v5 }
第三步:确定各因素的权重
一般情况下,因素集中的各因素在综合评价中所起的作用是不相同的,综合评价结果不仅与各因素的评价有关,而且在很大程度上还依赖于各因素对综合评价所起的作用,这就需要确定一个各因素之间的权重分配,它是U上的一个模糊向量,记为:A = [ a1 , a2 , ⋯, an ] 。
其中:ai为第i个因素的权重,且满足 ∑ai = 1。如果不满足加和为 1,那么可以在此处实现归一化,也可在最终结果处归一化。
假设说,此处已经确定了各因素的权重 A = [0.25,0.2,0.25,0.3]
确定权重的方法有很多,如:Delphi法(专家调查法)、加权平均法、众人评估法。但是建议:当没有数据的时候可采取层次分析法,有数据的时候可采取熵权法。
第四步:确定模糊综合评判矩阵,对每个元素 ui 做出评价
(注意:这里演示的是模糊统计法,并且这里的评定员工只有一位)
u1(工作方面)比如由群众评议打分来确定:
R1 = [0.1,0.5,0.4,0,0] 。这个式子表示,参与打分的群众中,有 10% 的人认为工作方面优秀,50% 的人认为工作方面良好,40% 的人认为工作方面一般,认为工作方面较差或差的人为0。用同样方法对其他因素进行评价。
R2 = [ 0.2,0.5 ,0.2,0.1,0 ],R3= [ 0.2,0.5,0.3,0,0 ],R4= [ 0.2,0.6,0.2,0,0]。
以Ri为第 i行构成评价矩阵:
大小为 n × m,其中 n是因素指标数目,m是评语数目
第五步:模糊综合评判
进行矩阵合成运算:
最终得出结果:B = [0.175,0.53,0.275,0.02,0]。
大小为 1 × m,其 bi 表示意义为:要评价对象对评语 i 的隶属度。
如:0.175 代表党员表现优秀的隶属度为 0.175,或者说优秀占比 17.5%(归一化),党员表现良好占比 53%,以此类推。
取数值最大的评语作为综合评判结果,则该党员的评判结果为“良好”。
4.模糊综合评价法的优点和缺点
优点:
可以处理模糊的评价对象,用精确的数字手段处理模糊的评价问题,使得评价结果更加科学、合理、贴近实际。
不仅可以比较准确地刻画被评价对象,而且可以进一步加工,得到参考信息。
适合各种非确定性问题的解决,能够将定性评价转化为定量评价,运用范围广泛。
缺点:
计算复杂,对指标权重向量的确定主观性较强。
当指标集U较大时,即在权向量和为1的条件约束下,相对隶属度权系数往往偏小,权向量与模糊矩阵R不匹配,会导致超模糊现象的出现,使得分辨率很差,无法区分谁的隶属度更高,甚至造成评判失败。
模糊综合评价法在某些情况下可能会受到一些限制,比如需要足够的经验和知识来理解和应用模糊数学的概念和方法,以及需要注意指标选择和权重设定的合理性等等。因此,在使用模糊综合评价法时需要根据具体情况进行综合考虑。