经典卷积模型回顾27—利用模型量化对DenseNet201进行处理,并实现图像分类(Pytorch)

深度模型量化是指将高精度、高位宽的模型参数和激活值压缩成低精度、低位宽的形式,从而达到减小模型存储空间和加速模型计算的目的。 具体操作流程一般包括:

1. 选择量化精度:根据应用场景和硬件实际性能,选择合适的量化精度。常见的量化精度包括8位量化、4位量化、2位量化等。

2. 量化模型参数:将模型中的参数进行量化,常见的量化方法有线性量化、对数量化等。

3. 量化模型激活值:将模型输入和中间层的输出进行量化,同样可以采用线性量化、对数量化等方法。

4. 针对量化后的模型进行微调:由于量化会导致精度损失,需要对量化后的模型进行微调,以尽可能地恢复精度。

5. 测试和评估:对量化后的模型进行测试和评估,以验证量化后的模型是否适合实际应用。       示例中,我们将使用PyTorch框架densenet201模型进行量化处理,并应用于图像分类任务。

### 环境设置

首先,我们需要安装所需的库和模型:

```python
!pip install torch==1.8.1 torchvision==0.9.1
!pip install pillow matplotlib
!pip install onnx onnxruntime
```

然后,我们需要下载densenet201模型:

```python
import torch

model = torch.hub.load('pytorch/vision', 'densenet201', pretrained=True)
model.eval()
```

### 数据集准备

本示例中,我们将使用CIFAR-10数据集作为示例数据集。可以通过以下方式下载数据集:

```python
from torchvision.datasets import CIFAR10
from torchvision import transforms

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])

trainset = CIFAR10(root='./data', train=True, download=True, transform=transform)
testset = CIFAR10(root='./data', train=False, download=True, transform=transform)
```

### 模型量化

在PyTorch中,我们可以使用fx模块将模型转换为可量化的形式:

```python
import torch.quantization
import torch.nn as nn
import torch.backends.quantized

# 量化前评估
def evaluate(model, testloader):
    criterion = nn.CrossEntropyLoss()
    correct = 0
    total = 0
    with torch.no_grad():
        for data in testloader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    print('Accuracy of the network on the 10000 test images: %d %%' % (
        100 * correct / total))

model.fuse_model()  # 融合BN层
model.qconfig = torch.quantization.get_default_qconfig('fbgemm') # 设置量化配置
torch.backends.quantized.engine = 'fbgemm' # 设置后端引擎
model_prepared = torch.quantization.prepare(model, inplace=False) # 准备量化
model_quantized = torch.quantization.convert(model_prepared, inplace=False) # 进行量化

# 量化后评估
evaluate(model_quantized, torch.utils.data.DataLoader(testset, batch_size=128, shuffle=True, num_workers=2))
```

### 模型应用

我们可以将量化后的模型应用于图像分类任务:

```python
import matplotlib.pyplot as plt
import numpy as np

# 反量化图像
def dequantize(img):
    img = img.numpy()
    img = (img * 0.5) + 0.5  # 反归一化
    img = img * 255.0  # 反量化
    img = img.astype(np.uint8)
    return img

# 验证分类效果
dataiter = iter(torch.utils.data.DataLoader(testset, batch_size=4, shuffle=True, num_workers=2))
images, labels = dataiter.next()
outputs = model_quantized(images)

_, predicted = torch.max(outputs, 1)

fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 4))
for i, ax in enumerate(axes):
    ax.imshow(dequantize(images[i].cpu()))
    ax.set_title(f"Predicted: {predicted[i].item()}", fontsize=10)
    ax.set_xlabel(f"True: {labels[i].item()}", fontsize=10)
    ax.set_xticks([])
    ax.set_yticks([])
plt.show()
```

其中,图像反量化是指将经过量化压缩的图像恢复到原始的未经压缩的状态。在图像的数字化处理中,为了减少数据存储量和传输带宽等因素,通常会对图像进行量化处理,即将连续的变化量化成离散的值。但是,这种离散化处理会导致图像的信息损失和质量下降。因此,在需要还原图像的精度和质量时,需要进行反量化处理,将离散化的值重新转换为连续的数值,恢复图像原有的信息和细节。

2. 好处

通过量化densenet201模型,我们可以获得以下好处:

- 减少模型的大小:量化将浮点参数转换为定点参数,从而减少了模型的大小。这使得模型在内存中所需的空间更少,从而使模型更易于部署。
- 减少模型的计算量:定点参数需要更少的计算量来执行乘法和加法操作,从而使模型更快速地运行。
- 提高模型的精度:量化可以使模型更加稳定,从而提高模型的精度和棒性。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
好的,下面是一个简单的PyTorch图像分类卷积神经网络的代码示例,可以用于对图像数据进行分类: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义一个卷积神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(64 * 16 * 16, 512) self.fc2 = nn.Linear(512, 10) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 64 * 16 * 16) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return x # 加载数据集并进行数据预处理 train_transforms = transforms.Compose([ transforms.RandomResizedCrop(size=64, scale=(0.8, 1.0)), transforms.RandomRotation(degrees=15), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) train_dataset = datasets.ImageFolder(root='path/to/train/dataset', transform=train_transforms) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) # 定义损失函数和优化器 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = Net().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): running_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader, 0): inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 print('Finished Training') ``` 在上面的代码中,我们首先定义了一个卷积神经网络模型,然后加载数据集并进行数据预处理。接下来,我们定义了损失函数和优化器,并利用训练集对模型进行训练。最后,我们打印出训练完成的提示信息。 需要注意的是,上面的代码仅仅是一个示例,你还需要根据你的具体需求进行修改和完善。例如,你需要将代码中的数据集路径修改为你自己的路径,并对模型进行调整以适应不同的数据集和分类任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

share_data

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值