经典卷积模型回顾23—mobilenetV2实现图像分类(tensorflow2.0)

MobileNet是由Google研发的一种轻量级神经网络,专门用于在移动设备上进行图像识别和分类任务。相对于传统的深度神经网络,MobileNet具有更轻量、更快速的特点,同时也能够保持较高的准确率。

MobileNet主要是通过使用深度可分离卷积来实现轻量化。深度可分离卷积是将标准卷积分解成一个深度卷积和一个逐点卷积的组合。这种方法的好处是可以大大减少模型的参数和计算量,从而在移动设备等资源有限的设备上实现实时的图像分类。

MobileNet的结构由卷积层、深度可分离卷积层、全局平均池化层和全连接层组成。其中,卷积层用来提取特征,深度可分离卷积层用来进一步减小模型的大小和计算量,全局平均池化层用来将特征图转换为固定长度的向量,全连接层用来进行分类。MobileNet还可以通过对特征图进行通道重组来增强模型的表达能力。

总之,MobileNet是一种轻量级、高效、准确的神经网络,适用于移动设备上的图像识别和分类任务。

深度可分离卷积介绍

深度可分离卷积(Depthwise Separable Convolution)是一种针对卷积神经网络的优化技术。它可以用来减少网络的参数数量和计算复杂度,并且在一定程度上可以提高网络的表现。

传统的卷积神经网络使用的是标准卷积(Standard Convolution),它使用的是一个较大的卷积核来在输入图像上进行卷积操作。如果卷积核的大小为 $K$,卷积操作需要进行 $K \times K$ 乘法操作和一个加法操作。对于每一个输出特征图,需要对 $K \times K \times C$ 个输入特征图进行卷积,其中 $C$ 是输入特征图的通道数。在深度较大的网络中,这样的计算复杂度是非常高的。

深度可分离卷积则是将标准卷积分为两个步骤:Depthwise Convolution 和 Pointwise Convolution。

Depthwise Convolution 是对每个输入通道进行卷积,它使用卷积核的大小和输入特征图的通道数相同。这一步操作只进行 $K \times K$ 乘法操作,输出通道数与输入通道数相同。

Pointwise Convolution 是在 Depthwise Convolution 的基础上,使用 $1 \times 1$ 的卷积核进行卷积。这一步操作只需要进行 $C \times D$ 次乘法操作,其中 $D$ 是输出特征图的通道数。

深度可分离卷积的优点在于它大幅减少了卷积操作所需的计算量和参数数量。它通过 Depthwise Convolution 将卷积操作分解为多个较小的卷积操作,每个卷积操作可以在不同的通道上进行处理,这样可以很好地提取输入特征图的空间信息。而 Pointwise Convolution 则专注于将不同通道之间的信息进行联系,从而得到最终的输出特征图。

深度可分离卷积被广泛应用于移动设备上的卷积神经网络,它可以在保持一定的精度的同时,大幅减小模型的体积和计算复杂度,从而提升了移动端的实时性能。

在tensorflow2.0的环境下,利用MobileNe tv2实现图像分类

 

```python

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2

from tensorflow.keras.layers import Dense, Flatten

 

# 设置GPU内存自增长

gpus = tf.config.experimental.list_physical_devices('GPU')

for gpu in gpus:

    tf.config.experimental.set_memory_growth(gpu, True)

 

# 定义数据生成器

train_datagen = ImageDataGenerator(rescale=1./255)

test_datagen = ImageDataGenerator(rescale=1./255)

 

train_dir = 'path/to/train_data'

test_dir = 'path/to/test_data'

 

train_generator = train_datagen.flow_from_directory(

    train_dir,

    target_size=(224, 224),

    batch_size=32,

    class_mode='binary'

)

 

test_generator = test_datagen.flow_from_directory(

    test_dir,

    target_size=(224, 224),

    batch_size=32,

    class_mode='binary'

)

 

# 定义模型

base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(224, 224, 3))

 

x = Flatten()(base_model.output)

x = Dense(1, activation='sigmoid')(x)

 

model = tf.keras.Model(inputs=base_model.input, outputs=x)

 

# 编译模型

model.compile(optimizer='adam',

              loss='binary_crossentropy',

              metrics=['accuracy'])

 

# 训练模型

model.fit(train_generator,

          epochs=10,

          validation_data=test_generator)

 

# 评估模型

model.evaluate(test_generator)

```

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

share_data

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值