BZOJ3387 [Usaco2004 Dec]Fence Obstacle Course栅栏行动

41 篇文章 0 订阅

按纵坐标从小到大顺序加入每个栅栏,用线段树维护从每个横坐标,纵坐标正无穷处走到0,0的答案,加入一个栅栏,一定是这段区间左边一段往左走,右边一段往右走,分界点可以算出来,两边都分别相当于给答案进行区间赋值再区间加等差数列,线段树搞就行了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
#include<bitset>
#include<queue>
#include<stack>
using namespace std;
#define MAXN 200010
#define MAXM 1010
#define INF 1000000000
#define MOD 1000000007
#define eps 1e-8
#define ll long long
int L=100000;
int sc[MAXN<<2],gc[MAXN<<2],v[MAXN<<2],ch[MAXN<<2];
inline void toch(int x,int y){
	sc[x]=gc[x]=0;
	v[x]=ch[x]=y;
}
inline void toadd(int x,int y,int z){
	sc[x]+=y;
	gc[x]+=z;
}
inline void pd(int x,int y,int z){
	if(ch[x]!=-1){
		toch(x<<1,ch[x]);
		toch(x<<1|1,ch[x]);
		ch[x]=-1;
	}
	int mid=y+z>>1;
	toadd(x<<1,sc[x],gc[x]);
	toadd(x<<1|1,sc[x]+(mid+1-y)*gc[x],gc[x]);
	sc[x]=0;
	gc[x]=0;
}
void change(int x,int y,int z,int l,int r,int cv){
	if(y==l&&z==r){
		toch(x,cv);
		return ;
	}
	pd(x,y,z);
	int mid=y+z>>1;
	if(r<=mid){
		change(x<<1,y,mid,l,r,cv);
	}else if(l>mid){
		change(x<<1|1,mid+1,z,l,r,cv);
	}else{
		change(x<<1,y,mid,l,mid,cv);
		change(x<<1|1,mid+1,z,mid+1,r,cv);
	}
}
void add(int x,int y,int z,int l,int r,int as,int ac){
	if(y==l&&z==r){
		toadd(x,as,ac);
		return ;
	}
	pd(x,y,z);
	int mid=y+z>>1;
	if(r<=mid){
		add(x<<1,y,mid,l,r,as,ac);
	}else if(l>mid){
		add(x<<1|1,mid+1,z,l,r,as,ac);
	}else{
		add(x<<1,y,mid,l,mid,as,ac);
		add(x<<1|1,mid+1,z,mid+1,r,as+(mid-l+1)*ac,ac);
	}
}
int ask(int x,int y,int z,int p){
	if(y==z){
		return v[x]+sc[x];
	}
	pd(x,y,z);
	int mid=y+z>>1;
	if(p<=mid){
		return ask(x<<1,y,mid,p);
	}else if(p>mid){
		return ask(x<<1|1,mid+1,z,p);
	}
}
int n,s;
int main(){
	int i,x,y;
	memset(ch,-1,sizeof(-1));
	scanf("%d%d",&n,&s);
	add(1,-L,L,-L,0,L,-1);
	add(1,-L,L,0,L,0,1);
	for(i=1;i<=n;i++){
		scanf("%d%d",&x,&y);
		int xx=ask(1,-L,L,x);
		int yy=ask(1,-L,L,y);
		int p=(yy-xx+x+y)/2;
		if(p>=x){
			p=min(p,y);
			change(1,-L,L,x,p,xx);
			add(1,-L,L,x,p,0,1);
		}
		p++;
		if(p<=y){
			p=max(p,x);
			change(1,-L,L,p,y,yy);
			add(1,-L,L,p,y,y-p,-1);
		}
	}
	printf("%d\n",ask(1,-L,L,s));
	return 0;
}

/*

*/


题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值