考虑DP,f[i]表示前i个的最大价值
我们发现对于任意一个i,他所选的最后一段所指定的颜色一定是i的颜色,因为否则的话i这个点就会没有贡献,一定不如最后一段只选一个i
那么在最后一段所选的颜色一定是i的情况下,最后一段的开头的颜色也一定是i的颜色,否则开头一段也没有贡献,不然单分出去一段
那么对于f[i],假设之前存在一个点j,这个点的颜色a[j]与i的颜色a[i]相等,那么我们可以让f[i]由j转移,价值为f[j-1]+a[j]*(s[i]-s[j]+1)^2,s[i]代表前i个数里a[i]出现的次数
我们发现对于任意一个颜色x,随着这个颜色的数不断出现,由每一个之前的a[j]=x的j转移所产生的价值都会不断增加,且j越小,增加的越块,如果有j1<j2,并且j1当前的价值比j2大了,那么j2就没有用了,于是我们可以维护一个单调栈,每次如果栈顶第二个的元素超过了栈顶,就把栈顶弹出,决策的时候直接用栈顶决策
而我们发现可能会出现栈顶第三个元素超过了栈顶,而栈顶第二个元素还没超过栈顶的情况,我们需要避免这种情况。我们发现对于任意的j1<j2<i1<i2,如果j1超过i1的时间比j2超过i1的时间要早,那么j1超过i2的时间也一定比j2超过i2的时间早,证明显然,并且我们对于任意的(j1,j2),j1<j2,我们都能直接算出在第几个颜色与j1,j2相等的数出现的时候,j1会超过j2,那么在我们即将把i压入栈顶的时候,只要当前栈顶第二个元素超过i的时间比当前栈顶超过i的时间要早,那么栈顶就也没用了,我们就可以弹栈,这样的话栈里的每一个元素超过上一个元素的时间也是单调的,于是就没有问题了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
#include<bitset>
#include<queue>
#include<stack>
using namespace std;
#define MAXN 100010
#define MAXM 10010
#define INF 1000000000
#define MOD 1000000007
#define eps 1e-8
#define ll long long
ll f[MAXN];
int s[MAXN];
int c[MAXM];
int a[MAXN];
vector<int>st[MAXM];
int n;
ll cal(int x,int y){
return f[x-1]+(ll)a[x]*y*y;
}
int beyond(int x,int y){
int l=1,r=n;
int re=n+1;
while(l<=r){
int mid=l+r>>1;
if(cal(x,mid-s[x]+1)>=cal(y,mid-s[y]+1)){
re=mid;
r=mid-1;
}else{
l=mid+1;
}
}
return re;
}
int main(){
int i,x;
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&x);
a[i]=x;
s[i]=++c[x];
while(st[x].size()>=2&&
beyond(st[x][st[x].size()-2],st[x][st[x].size()-1])<=
beyond(st[x][st[x].size()-1],i)
){
st[x].pop_back();
}
st[x].push_back(i);
while(st[x].size()>=2&&beyond(st[x][st[x].size()-2],st[x][st[x].size()-1])<=s[i]){
st[x].pop_back();
}
f[i]=cal(st[x][st[x].size()-1],s[i]-s[st[x][st[x].size()-1]]+1);
}
printf("%lld\n",f[n]);
return 0;
}
/*
5
1 3 2 3 1
*/