算法进阶day3

决定系数

TSS(样本平方和)
在这里插入图片描述
RSS(残差平方和)
在这里插入图片描述
又称为误差平方和
衡量模型拟合效果R^2
在这里插入图片描述
在RSS(误差平方和)>TSS(样本平方和)时,R^2<0

回归平方和
在这里插入图片描述
在无偏估计的情况下,才有TSS=ESS+RSS
其余情况 TSS>=RSS+ESS
局部加权回归
一般的线性回归
在这里插入图片描述
局部加权回归
在这里插入图片描述
增加了w,对某些部分的进行加权,使其复杂度增加

w权值的设置
1、高斯核函数
在这里插入图片描述
τ称为带宽,控制着训练样本x(i)随着与x(待查点,就是要估计的点的坐标)距离增大而增大的衰减速率(这块还是有点迷惑)

LogisticRegression

logistics函数(sigmoid函数)
在这里插入图片描述
该函数的性质
在这里插入图片描述
g’(x) = g(x)*(1-g(x))
该函数可以将输入样本压缩到0-1的区域内,设定一个阈值(这里假设阈值为0.5),若输出大于0.5,则判断该输入样本属于1类别,否则则属于0类别,logistics回归大致是这样完成分类任务的。
系数的确定(极大似然估计确定θ(梯度下降法))
似然函数
在这里插入图片描述
密度函数的确定如上,由于y只取0,1,所以上面这个函数可以很好的包含0,1两种情况
似然函数就是m个密度函数相乘,如下
在这里插入图片描述
根据sigmoid函数的性质,对似然函数取对数求导,求出函数的梯度公式
(注意,这里是要求的最大值,可以理解为梯度上升公式)
在这里插入图片描述

最终θ变化的公式
在这里插入图片描述
广义线性模型
对logisticsregression的概率函数取对数几率可以得到一个线性的函数,这样去界定它是一个广义的线性模型
在这里插入图片描述
logisticsregression的损失函数
以对数似然函数为损失函数
在这里插入图片描述
在这里插入图片描述
由于logisticsregression极大似然估计取得是最大值,损失函数需要加一个负号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值