m序列的原理以及verilog实现

定义

m序列是最长线性反馈移位寄存器序列的简称。它是由带线性反馈的移存器产生的周期最长的序列。一般来说,一个n级线性反馈移存器可能产生的最长周期等于(2^n -1)。

m序列是一种典型的伪随机序列。在通信领域有着广泛的应用,如扩频通信、卫星通信的码分多址(CDMA),数字数据中的加密、加扰、同步、误码率测量等领域。

线性反馈移位寄存器原理方框图

 

与产生m序列有关的3个方程

1)递推方程

它给出了状态ak和前面n个状态的关系。

2)特征方程(又叫特征方程式)

它决定了移存器的反馈连接和序列的结构。式中x^i仅指明其系数(1或0)代表ci的值,x本身的取值并无实际意义。

3)母函数

它表示反馈移存器的输出序列{ak}。
 

本原多项式

若一个n次多项式f(x)满足下列条件:
1)f(x)为既约的;
2)f(x)可整除(x^m +1),m=2^n -1;
3)f(x)除不尽(x^q +1),q<m;
则称f(x)为本原多项式。

为什么要理解本原多项式?因为一个线性反馈移存器能产生m序列的充要条件:反馈移存器的特征多项式为本原多项式。常用的本原多项式由查表得到。

本原多项式表

verilog实现及仿真

m_sequence.v(以x8+x4+x3+x2+1为例) tips:代码实现依据原理方框图和特征多项式。


<span style="font-size:14px;">module m_sequence(

  1. input sclk,

  2. input rst_n,

  3. output wire m_seq

  4. );

  5. parameter POLY = 8'b10001110;//由本原多项式得到

  6.  
  7. reg [7:0] shift_reg;

  8.  
  9. always@(posedge sclk or negedge rst_n)

  10. begin

  11. if(rst_n == 0)begin

  12. shift_reg <= 8'b11111111;//初值不可为全零

  13. end

  14. else begin

  15. shift_reg[7] <= (shift_reg[0] & POLY[7])^

  16. (shift_reg[1] & POLY[6])^

  17. (shift_reg[2] & POLY[5])^

  18. (shift_reg[3] & POLY[4])^

  19. (shift_reg[4] & POLY[3])^

  20. (shift_reg[5] & POLY[2])^

  21. (shift_reg[6] & POLY[1])^

  22. (shift_reg[7] & POLY[0]);

  23. shift_reg[6:0] <= shift_reg[7:1];

  24. end

  25. end

  26.  
  27. assign m_seq = shift_reg[0];

  28.  
  29. endmodule</span>

 

仿真截图:

注:从图中黄线处开始得到新值,黄线前面是初始化的值。

### 关于共生生物搜索算法 共生生物搜索算法(Symbiotic Organisms Search, SOS)[^3]是一种基于自然界中不同物种之间相互作用的启发式优化方法。该算法模拟了三种主要类型的共生关系:互利共生、偏利共生以及寄生现象。通过这些互动模式,SOS能够有效地探索解空间并找到全局最优解。 #### 算法特点 - **初始化阶段**:随机生成一组初始种群作为候选解决方案。 - **适应度评估**:计算每个个体的目标函数值来衡量其优劣程度。 - **交互过程**: - 对于每一对选定的有机体A和B, 如果两者都受益,则执行互利操作; 若仅一方获益而另一方不受影响,则实施单方面获利行为; 当存在有害情况时,采取对抗措施减少负面影响。 这种机制使得SOS可以在保持多样性的同时提高收敛速度[^3]。 ```python def symbiotic_organisms_search(population_size, max_iterations): population = initialize_population(population_size) for iteration in range(max_iterations): fitness_values = evaluate_fitness(population) # Perform symbiosis operations based on relationships between organisms update_best_solution() return best_solution_found ``` ### 遗传算法的应用与发展 遗传算法(Genetic Algorithms, GA)属于进化计算领域的一种元启发式搜索技术,在信息技术(IT)行业中被广泛应用用于解决复杂组合优化问题。GA模仿自然选择原理——适者生存法则来进行迭代改进潜在解答集直至获得满意的结果为止[^4]。 #### 主要组件 - **编码方案(Representation)**:定义如何表示待求参数集合;常见的有二进制串、实数向量等形式。 - **选择算子(Selection Operator)**:依据个体表现挑选参与繁殖后代的对象群体。 - **交叉重组(Crossover Recombination)**:交换父代成员的部分基因片段形成新的子代表型。 - **变异突变(Mutation Operation)**:引入少量随机扰动防止早熟收敛到局部极值点附近。 ```matlab function [bestIndividual, bestFitness] = genetic_algorithm(problemDefinition) % Initialize parameters such as population size, mutation rate etc. while not terminationCriterionMet parents = selectParents(currentPopulation); offspring = crossover(parents); mutatedOffspring = mutate(offspring); currentPopulation = replaceWorstWithBest(mutatedOffspring); [~, bestIndex] = min(fitnessValues); bestIndividual = currentPopulation(bestIndex,:); bestFitness = fitnessValues(bestIndex); end end ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值