利用反推和正推相结合的方法证明三角形共线问题(图解)

目录

1 题目

2 证明思路

3 证明过程


1 题目

如图,△ABC中,D、E、F分别为AB、AC、BC的中点,CD与BE交于点G,证明:A、G、F三点共线。

2 证明思路

这里我们应该从需要证明的地方反向推导出应该努力去证明的目标,才会提高解题效率。证明A、G、F三点共线,利用平面向量知识来证明,就是要证明AG=βAF。由于F是BC的中点,很容易看出AF=1/2(AB+AC),

                       (以上用到F是BC中点)

所以就需要证明AG=u(AB+AC)。所以应该努力用AB和AC来表达AG就应该能够达到目标。反向思考后,再从正向思考,就是从题目给的已知条件出发,题目给的条件应该都要在证明过程中用上,在这里就是D、E、F分别为AB、AC、BC的中点这个条件。

有了这个思路和需要利用三个中点的已知条件后,就可以开始证明了。

3 证明过程

∵AG=AB+BG,

                          (以下向量展开沿着图1中的路径1)

又BG=BC+CG=AC-AB+CG=AC-AB+λCD=AC-AB+λ(1/2AB-AC)=(λ/2-1)AB+(1-λ)AC  (1)

                                                                   (以上用到D是AB中点)

,这里λ未知,所以BG还必须用另外一种方式表达,才能求解出λ。

                             (以下向量展开沿着图1中的路径2)

又由于B,G,E共线,所以BG=αBE,

BE=BA+1/2AC=-AB+(1/2)AC,

     (以上用到E是AC中点)

∴BG=α(-AB+(1/2)AC)=-αAB+(α/2)AC  (2)

由(1)和(2),可以列出方程组:

(λ/2-1)=-α

(1-λ)=α/2

求解以上方程,可以解得λ=2/3,代入(1)得到:

BG=-(2/3)AB+(1/3)AC,

∴AG=(1/3)(AB+AC),

又AF=(1/2)(AB+AC)

∴AF=(2/3)AG, AF//AG, ∴A,G,F共线。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值