目录
1 题目
如图,△ABC中,D、E、F分别为AB、AC、BC的中点,CD与BE交于点G,证明:A、G、F三点共线。
2 证明思路
这里我们应该从需要证明的地方反向推导出应该努力去证明的目标,才会提高解题效率。证明A、G、F三点共线,利用平面向量知识来证明,就是要证明AG=βAF。由于F是BC的中点,很容易看出AF=1/2(AB+AC),
(以上用到F是BC中点)
所以就需要证明AG=u(AB+AC)。所以应该努力用AB和AC来表达AG就应该能够达到目标。反向思考后,再从正向思考,就是从题目给的已知条件出发,题目给的条件应该都要在证明过程中用上,在这里就是D、E、F分别为AB、AC、BC的中点这个条件。
有了这个思路和需要利用三个中点的已知条件后,就可以开始证明了。
3 证明过程
∵AG=AB+BG,
(以下向量展开沿着图1中的路径1)
又BG=BC+CG=AC-AB+CG=AC-AB+λCD=AC-AB+λ(1/2AB-AC)=(λ/2-1)AB+(1-λ)AC (1)
(以上用到D是AB中点)
,这里λ未知,所以BG还必须用另外一种方式表达,才能求解出λ。
(以下向量展开沿着图1中的路径2)
又由于B,G,E共线,所以BG=αBE,
BE=BA+1/2AC=-AB+(1/2)AC,
(以上用到E是AC中点)
∴BG=α(-AB+(1/2)AC)=-αAB+(α/2)AC (2)
由(1)和(2),可以列出方程组:
(λ/2-1)=-α
(1-λ)=α/2
求解以上方程,可以解得λ=2/3,代入(1)得到:
BG=-(2/3)AB+(1/3)AC,
∴AG=(1/3)(AB+AC),
又AF=(1/2)(AB+AC)
∴AF=(2/3)AG, AF//AG, ∴A,G,F共线。