图解过一个点和曲线相切的切线求法

1 容易出错的地方

高中数学中,经常会遇到这样两种看上去比较相似的题:
1 求函数y=f(x)过一个点A的切线
2 求函数y=f(x)在一个点A的切线
一般来说,“在一个点A的切线”表示这个点A就在切线上。“过一个点A的切线”表示这个点A可能在切线上面,也可能不在切线上面。很多同学会不经意就忽略了这个文字区别,从而审错题目,导致本来就会的题目做了很久,却做错了。有些同学甚至一看到这类题目,就神经紧张,很担心自己看错题目。所以这里,我们介绍一个方法,避免大家做错。

2 解决方法

拿个这类题目后,可以先不管是不是“在一个点”还是“过一个点”,同学们先自己把这个点的坐标代入y=f(x)函数去验证一下,看看点A到底在曲线上面还是不在曲线上面,这样就可以彻底消除审错题目的可能性。

下面举一个例子:
设 y - (x³ - 3x² + 1) = 0,求过点A(1,0)和曲线y相切的切线
如果认为A就是切点,直接通过点斜式求出切线方程:
(y-0)=y’(1)(x-1)
y=(3-6)(x-1)
y=-3x+3
上面这切线方程是错误的,当同学们检查的时候,如果只是从文字上面很难发现错误。但是当我们画出图形后就很容易看出错误了,下面是图形:
在这里插入图片描述
从图形我们可以很容易看出,切线求错了,那求出的又是什么呢。分析可以得出,求出的切线实际上是这样一条直线,经过A点画y轴平行线,和曲线y的交点为B,然后过点A做和曲线在B点的切线平行的一条直线。
产生这样错误的原因就是没有验证A点是不是在曲线y上面,所以正确步骤应该是先把A点代入曲线方程:
(1-3+1)<0
发现A点不在曲线上面,接下来就要按照一般步骤,先求函数的导函数:
y’=3x2-6x
设切点Q(xt,yt),根据直线的点斜式列方程:
(y-yt)=y’(xt)(x-xt) (1)
因为直线过A点,所以代入A(1,0)点坐标可以使方程成立:
-yt=(3xt2-6xt)(1-xt)
又由于 yt=xt³ - 3xt² + 1,代入上式,得到:
xt³ - 3xt² + 1=-(3xt2-6xt)(1-xt) => 2xt3-6xt2+6xt-1=0
以上式子是一个一元三次方程,通用的求解是比较复杂的,一般用试根法,比如代入1,2,0,-1,-2去试出一个根,再利用分解因式,得到另外两个实数根。在试根时,可以大概画出函数的图形:

在这里插入图片描述

直观看一看,在整数附近有没有切点,基本上就能试出一个根了。本题为了演示切线的一般性,所以在整数附近没有切点。直接告诉大家,切点为G(0.21,0.88),得到了切点G,带回公式1,就容易得到切线方程了。
另外,很多题目都是让点A刚刚好本身就是一个切点,那就相当于已经试出一个根了,再利用分解因式或待定系数法,就容易求出另外两个根,从而得到相应的切线。
为了大家更容易理解,以下动图揭示了设切点为为(xt,yt),然后让切线经过一个点的求解过程:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值