利用多元复合函数的求导法则推导出高中数学中和一元函数相关的求导法则
教学视频【利用多元复合函数的求导法则推导出高中数学中和一元函数相关的求导法则教学视频】 https://www.bilibili.com/video/BV1xqd6YKEL4/?share_source=copy_web&vd_source=6e1d0738c0c2f023c3d721aae234a942
1 二元复合函数的偏导数求导法则
如果c是u,v的二元函数,即:
C=f(u,v),
而u,v又是x,y的二元函数,于是c可以表达为x,y的二元复合函数:
C=f[u(x,y),v(x,y)]
则c关于x,y的偏导数存在以下公式:
∂
c
∂
x
=
∂
c
∂
u
⋅
∂
u
∂
x
+
∂
c
∂
v
⋅
∂
v
∂
x
\frac{\partial c}{\partial x} = \frac{\partial c}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial x}
∂x∂c=∂u∂c⋅∂x∂u+∂v∂c⋅∂x∂v
(1)
∂
c
∂
y
=
∂
c
∂
u
⋅
d
u
∂
y
+
∂
c
∂
v
⋅
∂
v
∂
y
\frac{\partial c}{\partial y} = \frac{\partial c}{\partial u} \cdot \frac{\mathbb{d}u}{\partial y} + \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial y}
∂y∂c=∂u∂c⋅∂ydu+∂v∂c⋅∂y∂v
(2)
2 利用多元复合函数的求导法则推导一元复合函数的求导法则:
一元复合函数是二元复合函数的特例,此时有如下式子成立:
∂ c ∂ v = 0 \frac{\partial c}{\partial v} = 0 ∂v∂c=0 (3)
把 (3)代入(1),可以得到:
∂ c ∂ x = ∂ c ∂ u ⋅ ∂ u ∂ x \frac{\partial c}{\partial x} = \frac{\partial c}{\partial u} \cdot \frac{\partial u}{\partial x} ∂x∂c=∂u∂c⋅∂x∂u
由于是一元函数,偏导数符号变为导数符号:
d C d x = d C d u ∙ d u d x \frac{\mathbb{d}C}{\mathbb{d}x} = \frac{\mathbb{d}C}{\mathbb{d}u} \bullet \frac{\mathbb{d}u}{\mathbb{d}x} dxdC=dudC∙dxdu
从而得出一元复合函数的导数为c对中间变量u的导数和u对变量x的导数的乘积。
3 一元函数的乘积的导数法则
函数c=f(x)g(x)相对于自变量x的导数的推导过程如下:
令u=f(x), v=g(x)有以下式子成立:
∂ c ∂ u = v \frac{\partial c}{\partial u} = v ∂u∂c=v
∂ C ∂ v = u \frac{\partial C}{\partial v} = u ∂v∂C=u
把上面两个式子代入,得到:
d c d x = d u d x ⋅ v + d v d x ⋅ u \frac{\mathbb{d}c}{\mathbb{d}x} = \frac{du}{\mathbb{d}x} \cdot v + \frac{\mathbb{d}v}{\mathbb{d}x} \cdot u dxdc=dxdu⋅v+dxdv⋅u
以上就是一元函数的乘积的导数法则。
4 一元函数的商的导数法则:
函数c=f(x)/g(x)相对于自变量x的导数的推导过程如下:
令u=f(x), v=g(x)有以下式子成立:
∂ C ∂ u = 1 v \frac{\partial C}{\partial u} = \frac{1}{v} ∂u∂C=v1
∂ C ∂ v = − u v 2 \frac{\partial C}{\partial v} = - \frac{u}{v^{2}} ∂v∂C=−v2u
把上面两个式子代入(1),得到:
d C d x = 1 v ⋅ d U d x − u v 2 ⋅ d v d x \frac{\mathbb{d}C}{\mathbb{d}x} = \frac{1}{v} \cdot \frac{\mathbb{d}U}{\mathbb{d}x} - \frac{u}{v^{2}} \cdot \frac{\mathbb{d}v}{\mathbb{d}x} dxdC=v1⋅dxdU−v2u⋅dxdv
化简后,得到:
d C d x = u ′ v − v ′ u v 2 \frac{\mathbb{d}C}{\mathbb{d}x} = \frac{u'v - v'u}{v^{2}} dxdC=v2u′v−v′u
以上就是一元函数的商的导数法则