利用多元复合函数的求导法则推导出高中数学中和一元函数相关的求导法则

利用多元复合函数的求导法则推导出高中数学中和一元函数相关的求导法则

教学视频【利用多元复合函数的求导法则推导出高中数学中和一元函数相关的求导法则教学视频】 https://www.bilibili.com/video/BV1xqd6YKEL4/?share_source=copy_web&vd_source=6e1d0738c0c2f023c3d721aae234a942

1 二元复合函数的偏导数求导法则

如果c是u,v的二元函数,即:

C=f(u,v),

而u,v又是x,y的二元函数,于是c可以表达为x,y的二元复合函数:

C=f[u(x,y),v(x,y)]

则c关于x,y的偏导数存在以下公式:

∂ c ∂ x = ∂ c ∂ u ⋅ ∂ u ∂ x + ∂ c ∂ v ⋅ ∂ v ∂ x \frac{\partial c}{\partial x} = \frac{\partial c}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial x} xc=ucxu+vcxv
(1)

∂ c ∂ y = ∂ c ∂ u ⋅ d u ∂ y + ∂ c ∂ v ⋅ ∂ v ∂ y \frac{\partial c}{\partial y} = \frac{\partial c}{\partial u} \cdot \frac{\mathbb{d}u}{\partial y} + \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial y} yc=ucydu+vcyv
(2)

2 利用多元复合函数的求导法则推导一元复合函数的求导法则:

一元复合函数是二元复合函数的特例,此时有如下式子成立:

∂ c ∂ v = 0 \frac{\partial c}{\partial v} = 0 vc=0 (3)

把 (3)代入(1),可以得到:

∂ c ∂ x = ∂ c ∂ u ⋅ ∂ u ∂ x \frac{\partial c}{\partial x} = \frac{\partial c}{\partial u} \cdot \frac{\partial u}{\partial x} xc=ucxu

由于是一元函数,偏导数符号变为导数符号:

d C d x = d C d u ∙ d u d x \frac{\mathbb{d}C}{\mathbb{d}x} = \frac{\mathbb{d}C}{\mathbb{d}u} \bullet \frac{\mathbb{d}u}{\mathbb{d}x} dxdC=dudCdxdu

从而得出一元复合函数的导数为c对中间变量u的导数和u对变量x的导数的乘积。

3 一元函数的乘积的导数法则

函数c=f(x)g(x)相对于自变量x的导数的推导过程如下:

令u=f(x), v=g(x)有以下式子成立:

∂ c ∂ u = v \frac{\partial c}{\partial u} = v uc=v

∂ C ∂ v = u \frac{\partial C}{\partial v} = u vC=u

把上面两个式子代入,得到:

d c d x = d u d x ⋅ v + d v d x ⋅ u \frac{\mathbb{d}c}{\mathbb{d}x} = \frac{du}{\mathbb{d}x} \cdot v + \frac{\mathbb{d}v}{\mathbb{d}x} \cdot u dxdc=dxduv+dxdvu

以上就是一元函数的乘积的导数法则。

4 一元函数的商的导数法则:

函数c=f(x)/g(x)相对于自变量x的导数的推导过程如下:

令u=f(x), v=g(x)有以下式子成立:

∂ C ∂ u = 1 v \frac{\partial C}{\partial u} = \frac{1}{v} uC=v1

∂ C ∂ v = − u v 2 \frac{\partial C}{\partial v} = - \frac{u}{v^{2}} vC=v2u

把上面两个式子代入(1),得到:

d C d x = 1 v ⋅ d U d x − u v 2 ⋅ d v d x \frac{\mathbb{d}C}{\mathbb{d}x} = \frac{1}{v} \cdot \frac{\mathbb{d}U}{\mathbb{d}x} - \frac{u}{v^{2}} \cdot \frac{\mathbb{d}v}{\mathbb{d}x} dxdC=v1dxdUv2udxdv

化简后,得到:

d C d x = u ′ v − v ′ u v 2 \frac{\mathbb{d}C}{\mathbb{d}x} = \frac{u'v - v'u}{v^{2}} dxdC=v2uvvu

以上就是一元函数的商的导数法则

5 至于一元函数的和、差的求导法则也可以同理推出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值