目录
一 题目
已知x>0,y>0,则的最小值为
一 解法1:直接展开函数叠加法。
此种方法比较直接,容易理解,直接展开函数,把能够凑成乘积为常数的项归到一起:
原式=
以上式子可以看成以下三个函数的叠加:
f1=
f2=
f3=
很明显,当三个函数如果能同时取到各自的最小值,叠加后就有最小值,而且是各自最小值相加。前两个函数的自变量完全独立,能够取到各自最小值2。最后一个函数f3的自变量受到前两个函数自变量的影响,不一定能够取到最小值,需要尝试。当2x/y=2y/x时,f3取得最小值,推得x=y。当前两个函数取得最小值时,x=1,y=1。
解方程组:x=1, y=1, x=y ,有解且唯一就是x=1,y=1.
所以推得整个式子的最小值为
二 解法2:不展开式子采用复合函数法。
此种方法不容易理解,但计算步骤少,需要对不等式性质有较深的理解。
不展开原式:令
f1(x,y)=,f1是以x,y为参数的变量。
f2(x,y)= ,f2也是以x,y为参数的变量。
一般如果参变量只有一个的时候,f1和f2在坐标平面上表示一个曲线。现在参变量有两个x,y,所以,一般f1和f2在坐标平面上表示一片特定的区域。无论f1和f2有什么关系,他们都是实数,都遵循不等式性质:
所以原式=2f1*f2 》2
=2(xy+1/xy+2) 》2(2+2)=8
当x=y=1时,两个等号可以同时成立。所以可以取到最小值8。
从图形看:
橙色框里面的圆圈代表
红色框里面的矩形代表 2f1*f2
红色框里面有最小值即最右边那个褐色框里面的,而且上面的圆圈紧贴在其上面,表示相等。所以从几何图形上面看,也能理解最小值存在
上图中,下面两个红色圆圈表示2f1*f2q最小值,但是此时>这个最小值。只有在图中青色直线上面的红色圆圈,才有
=min(2f1*f2q),即取得到最小值。