高中不等式之求最小值的几种方法

目录

一 题目

一 解法1:直接展开函数叠加法。

二 解法2:不展开式子采用复合函数法。


一 题目

已知x>0,y>0,则(x+1/y)^2+(1/x+y)^2的最小值为      

一 解法1:直接展开函数叠加法。

此种方法比较直接,容易理解,直接展开函数,把能够凑成乘积为常数的项归到一起:

原式=(x^2+1/x^2)+(y^2+1/y^2)+(2x/y+2y/x)

以上式子可以看成以下三个函数的叠加:

f1=(x^2+1/x^2)

f2=(y^2+1/y^2)

f3=(2x/y+2y/x)

很明显,当三个函数如果能同时取到各自的最小值,叠加后就有最小值,而且是各自最小值相加。前两个函数的自变量完全独立,能够取到各自最小值2。最后一个函数f3的自变量受到前两个函数自变量的影响,不一定能够取到最小值,需要尝试。当2x/y=2y/x时,f3取得最小值,推得x=y。当前两个函数取得最小值时,x=1,y=1。

解方程组:x=1, y=1, x=y ,有解且唯一就是x=1,y=1.

所以推得整个式子的最小值为

2\sqrt{(x^2*1/x^2)}+2\sqrt{(y^2*1/y^2)}+2\sqrt{(2x/y)(2y/x)}=8

二 解法2:不展开式子采用复合函数法。

此种方法不容易理解,但计算步骤少,需要对不等式性质有较深的理解。

不展开原式:令

f1(x,y)=(x+1/y),f1是以x,y为参数的变量。

f2(x,y)=(1/x+y) ,f2也是以x,y为参数的变量。

一般如果参变量只有一个的时候,f1和f2在坐标平面上表示一个曲线。现在参变量有两个x,y,所以,一般f1和f2在坐标平面上表示一片特定的区域。无论f1和f2有什么关系,他们都是实数,都遵循不等式性质:

a^2+b^2\geq 2ab

所以原式=f1^2+f2^2\geqslant2f1*f2 》2(x+1/y)(1/x+y)=2(xy+1/xy+2) 》2(2+2)=8

当x=y=1时,两个等号可以同时成立。所以可以取到最小值8。

从图形看:

橙色框里面的圆圈代表f1^2+f2^2

红色框里面的矩形代表 2f1*f2

红色框里面有最小值即最右边那个褐色框里面的,而且上面的圆圈紧贴在其上面,表示相等。所以从几何图形上面看,也能理解最小值存在

上图中,下面两个红色圆圈表示2f1*f2q最小值,但是此时f1^2+f2^2>这个最小值。只有在图中青色直线上面的红色圆圈,才有f1^2+f2^2=min(2f1*f2q),即取得到最小值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值