yolo将标签数据打到原图上形成目标框

第一章

目标:为了查看自己在标注标签时是否准确,写了这段代码来将标注的框打到原图上

第二章

步骤:进行反归一化得到坐标画出矩形框

第二行是目标图片对应的txt,第三行是目标图片

第三章

全部代码如下:

import cv2
import numpy as np

label_path = 'C:/Users/23918/Desktop/01_missing_hole_01.txt'
image_path = 'C:/Users/23918/Desktop/01_missing_hole_01.jpg'

# 坐标转换,原始存储的是YOLOv5格式
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
def xywh2xyxy(x, y, w, h, w1, h1, img):
    print("原图宽高:\nw1={}\nh1={}".format(w1, h1))
    # 边界框反归一化
    x_t = x * w1
    y_t = y * h1
    w_t = w * w1
    h_t = h * h1
    print("反归一化后输出:\n第一个:{}\t第二个:{}\t第三个:{}\t第四个:{}\t\n\n".format(x_t, y_t, w_t, h_t))

    # 计算坐标
    top_left_x = x_t - w_t / 2
    top_left_y = y_t - h_t / 2
    bottom_right_x = x_t + w_t / 2
    bottom_right_y = y_t + h_t / 2
    print("左上x坐标:{}".format(top_left_x))
    print("左上y坐标:{}".format(top_left_y))
    print("右下x坐标:{}".format(bottom_right_x))
    print("右下y坐标:{}".format(bottom_right_y))

    # 绘图  rectangle()函数需要坐标为整数
    cv2.rectangle(img, (int(top_left_x), int(top_left_y)), (int(bottom_right_x), int(bottom_right_y)), (0, 255, 0), 2)
    # cv2.imshow('show', img)
    cv2.imwrite('11.png', img)
    cv2.waitKey(0)  # 按键结束
    cv2.destroyAllWindows()


# 读取labels
with open(label_path, 'r') as f:
    lines = f.read().strip().splitlines()
    lb = np.array([x.split() for x in lines], dtype=np.float32)  # labels
    print(lb)

# 读取图像文件
img = cv2.imread(str(image_path))
h, w = img.shape[:2]

# 反归一化并得到左上和右下坐标,画出矩形框
for label in lb:
    x, y, width, height = label[1:]
    xywh2xyxy(x, y, width, height, w, h, img)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李烁.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值