大数据4.1HDFS

HDFS产出背景及定义

1)HDFS产生背景
随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。
2)HDFS定义
HDFS(Hadoop Distributed File System),它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
HDFS的使用场景:适合一次写入,多次读出的场景。一个文件经过创建、写入和关闭之后就不需要改变。

HDFS优缺点

优点
(1) 高容错性

  1. 数据自动保存多个副本。它通过增加副本的形式,提高容错性。

  2. 某一个副本丢失以后,它可以自动恢复,这是由 HDFS 内部机制实现的,我们不必关心。

(2) 适合批处理

  1. 它是通过移动计算而不是移动数据。

  2. 它会把数据位置暴露给计算框架。

(3) 适合大数据处理

  1. 数据规模:能够处理数据规模达到 GB、TB、甚至PB级别的数据。

  2. 文件规模:能够处理百万规模以上的文件数量,数量相当之大。

  3. 节点规模:能够处理10K节点的规模。

(4) 流式数据访问

  1. 一次写入,多次读取,不能修改,只能追加。

  2. 它能保证数据的一致性。

(5) 可构建在廉价机器上

  1. 它通过多副本机制,提高可靠性。

  2. 它提供了容错和恢复机制。比如某一个副本丢失,可以通过其它副本来恢复。

缺点
2、 HDFS 缺点:

(1) 不适合低延时数据访问;

  1. 比如毫秒级的来存储数据,这是不行的,它做不到。

  2. 它适合高吞吐率的场景,就是在某一时间内写入大量的数据。但是它在低延时的情况 下是不行的,比如毫秒级以内读取数据,这样它是很难做到的。

(2) 无法高效的对大量小文件进行存储

  1. 存储大量小文件的话,它会占用 NameNode大量的内存来存储文件、目录和块信息。这样是不可取的,因为NameNode的内存总是有限的。

  2. 小文件存储的寻道时间会超过读取时间,它违反了HDFS的设计目标。

(3) 并发写入、文件随机修改

  1. 一个文件只能有一个写,不允许多个线程同时写。

  2. 仅支持数据 append(追加),不支持文件的随机修改。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值