【题目大意】:有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。(1胜,0负)
【解题思路】:威佐夫博弈(Wythoff Game)
【威佐夫博弈】: 威佐夫博弈:给出两堆各若干个物品,两人轮流从一堆或者同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者获胜。
设(x,y)表示每一堆的物品的个数,如果某人(假设为甲)面对(0,0)这种局势,那么甲就一定输,这种局势,我们称为奇异局势。
前几个奇异局势是:
( 0 , 0 )、( 1 , 2 )、( 3 , 5 )、( 4 , 7 )、( 6 , 10 ) . 可以看出 ,a0=b0=0, ak 是未在前面出现过的最小自然数 , 而 bk=ak+k .那么任给一个局势( a , b ),怎样判断它是不是奇异局势呢?
我们有如下公式:ak =[k ( 1+ √ 5 ) /2] , bk= ak + k ( k=0 , 1 , 2 , ...,n 方括号表示取整函数 )奇妙的是其中出现了黄金分割数( 1+ √ 5 ) /2 = 1 。 618..., 因此 , 由 ak , bk 组成的矩形近似为黄金矩形,由于 2/ ( 1+ √ 5 ) = ( √ 5-1 ) /2 ,可以先求出 k=[a ( √ 5-1 ) /2] ,
若 a=[k ( 1+ √ 5 ) /2] ,那么 a = ak , bk = ak + k ,若不等于,那么 a = ak+1 , bk+1 = ak+1+ k + 1 ,若都不是,
【解题思路】:威佐夫博弈(Wythoff Game)
【威佐夫博弈】: 威佐夫博弈:给出两堆各若干个物品,两人轮流从一堆或者同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者获胜。
设(x,y)表示每一堆的物品的个数,如果某人(假设为甲)面对(0,0)这种局势,那么甲就一定输,这种局势,我们称为奇异局势。
前几个奇异局势是:
( 0 , 0 )、( 1 , 2 )、( 3 , 5 )、( 4 , 7 )、( 6 , 10 ) . 可以看出 ,a0=b0=0, ak 是未在前面出现过的最小自然数 , 而 bk=ak+k .那么任给一个局势( a , b ),怎样判断它是不是奇异局势呢?
我们有如下公式:ak =[k ( 1+ √ 5 ) /2] , bk= ak + k ( k=0 , 1 , 2 , ...,n 方括号表示取整函数 )奇妙的是其中出现了黄金分割数( 1+ √ 5 ) /2 = 1 。 618..., 因此 , 由 ak , bk 组成的矩形近似为黄金矩形,由于 2/ ( 1+ √ 5 ) = ( √ 5-1 ) /2 ,可以先求出 k=[a ( √ 5-1 ) /2] ,
若 a=[k ( 1+ √ 5 ) /2] ,那么 a = ak , bk = ak + k ,若不等于,那么 a = ak+1 , bk+1 = ak+1+ k + 1 ,若都不是,
那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。
【代码】:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
#include <string>
#include <cctype>
#include <map>
#include <iomanip>
using namespace std;
#define eps 1e-8
#define pi acos(-1.0)
#define inf 1<<30
#define pb push_back
#define lc(x) (x << 1)
#define rc(x) (x << 1 | 1)
#define lowbit(x) (x & (-x))
#define ll long long
const double gold=1.6180339887498948482045-1;
int x,y,m,n;
int main(){
while (~scanf("%d%d",&n,&m)){
if (m==n) cout << 1 << endl;
else{
if (m>n) swap(m,n);
x=n-m;
y=int(double (x)/ gold);
if (y==m) cout << 0 << endl;
else cout << 1 << endl;
}
}
return 0;
}