function varargout = tsp_ga(xy,dmat,pop_size,num_iter,show_prog,show_res)
%TSP_GA Traveling Salesman Problem (TSP) Genetic Algorithm (GA)
% Finds a (near) optimal solution to the TSP by setting up a GA to search
% for the shortest route (least distance for the salesman to travel to
% each city exactly once and return to the starting city)
%
% Summary:
% 1. A single salesman travels to each of the cities and completes the
% route by returning to the city he started from
% 2. Each city is visited by the salesman exactly once
%
% Input:
% XY (float) is an Nx2 matrix of city locations, where N is the number of cities
% DMAT (float) is an NxN matrix of point to point distances/costs
% POP_SIZE (scalar integer) is the size of the population (should be divisible by 4)
% NUM_ITER (scalar integer) is the number of desired iterations for the algorithm to run
% SHOW_PROG (scalar logical) shows the GA progress if true
% SHOW_RES (scalar logical) shows the GA results if true
%
% Output:
% OPT_RTE (integer array) is the best route found by the algorithm
% MIN_DIST (scalar float) is the cost of the best route
%
% 2D Example:
% n = 50;
% xy = 10*rand(n,2);
% pop_size = 60;
% num_iter = 1e4;
% show_prog = 1;
% show_res = 1;
% a = meshgrid(1:n);
% dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),n,n);
% [opt_rte,min_dist] = tsp_ga(xy,dmat,pop_size,num_iter,show_prog,show_res);
%
% 3D Example:
% n = 50;
% xyz = 10*rand(n,3);
% pop_size = 60;
% num_iter = 1e4;
% show_prog = 1;
% show_res = 1;
% a = meshgrid(1:n);
% dmat = reshape(sqrt(sum((xyz(a,:)-xyz(a',:)).^2,2)),n,n);
% [opt_rte,min_dist] = tsp_ga(xyz,dmat,pop_size,num_iter,show_prog,show_res);
%
% See also: mtsp_ga, tsp_nn, tspo_ga, tspof_ga, tspofs_ga, distmat
%
% Author: Joseph Kirk
% Email: jdkirk630@gmail.com
% Release: 2.2
% Release Date: 6/2/09
% Process Inputs and Initialize Defaults
nargs = 6;
for k = nargin:nargs-1
switch k
case 0
xy = 10*rand(50,2);
case 1
N = size(xy,1);
a = meshgrid(1:N);
dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),N,N);
case 2
pop_size = 100;
case 3
num_iter = 1e4;
case 4
show_prog = 1;
case 5
show_res = 1;
otherwise
end
end
% Verify Inputs
[N,dims] = size(xy);
[nr,nc] = size(dmat);
if N ~= nr || N ~= nc
error('Invalid XY or DMAT inputs!')
end
n = N;
% Sanity Checks
pop_size = 4*ceil(pop_size/4);
num_iter = max(1,round(real(num_iter(1))));
show_prog = logical(show_prog(1));
show_res = logical(show_res(1));
% Initialize the Population
pop = zeros(pop_size,n);
for k = 1:pop_size
pop(k,:) = randperm(n);
end
% Run the GA
global_min = Inf;
total_dist = zeros(1,pop_size);
dist_history = zeros(1,num_iter);
tmp_pop = zeros(4,n);
new_pop = zeros(pop_size,n);
if show_prog
pfig = figure('Name','TSP_GA | Current Best Solution','Numbertitle','off');
end
for iter = 1:num_iter
% Evaluate Each Population Member (Calculate Total Distance)
for p = 1:pop_size
d = dmat(pop(p,n),pop(p,1)); % Closed Path
for k = 2:n
d = d + dmat(pop(p,k-1),pop(p,k));
end
total_dist(p) = d;
end
% Find the Best Route in the Population
[min_dist,index] = min(total_dist);
dist_history(iter) = min_dist;
if min_dist < global_min
global_min = min_dist;
opt_rte = pop(index,:);
if show_prog
% Plot the Best Route
figure(pfig);
rte = opt_rte([1:n 1]);
if dims == 3, plot3(xy(rte,1),xy(rte,2),xy(rte,3),'r.-');
else plot(xy(rte,1),xy(rte,2),'r.-'); end
title(sprintf('Total Distance = %1.4f, Iteration = %d',min_dist,iter));
end
end
% Genetic Algorithm Operators
rand_pair = randperm(pop_size);
for p = 4:4:pop_size
rtes = pop(rand_pair(p-3:p),:);
dists = total_dist(rand_pair(p-3:p));
[ignore,idx] = min(dists);
best_of_4_rte = rtes(idx,:);
ins_pts = sort(ceil(n*rand(1,2)));
I = ins_pts(1);
J = ins_pts(2);
for k = 1:4 % Mutate the Best to get Three New Routes
tmp_pop(k,:) = best_of_4_rte;
switch k
case 2 % Flip
tmp_pop(k,I:J) = fliplr(tmp_pop(k,I:J));
case 3 % Swap
tmp_pop(k,[I J]) = tmp_pop(k,[J I]);
case 4 % Slide
tmp_pop(k,I:J) = tmp_pop(k,[I+1:J I]);
otherwise % Do Nothing
end
end
new_pop(p-3:p,:) = tmp_pop;
end
pop = new_pop;
end
if show_res
% Plots the GA Results
figure('Name','TSP_GA | Results','Numbertitle','off');
subplot(2,2,1);
if dims == 3, plot3(xy(:,1),xy(:,2),xy(:,3),'k.');
else plot(xy(:,1),xy(:,2),'k.'); end
title('City Locations');
subplot(2,2,2);
imagesc(dmat(opt_rte,opt_rte));
title('Distance Matrix');
subplot(2,2,3);
rte = opt_rte([1:n 1]);
if dims == 3, plot3(xy(rte,1),xy(rte,2),xy(rte,3),'r.-');
else plot(xy(rte,1),xy(rte,2),'r.-'); end
title(sprintf('Total Distance = %1.4f',min_dist));
subplot(2,2,4);
plot(dist_history,'b','LineWidth',2);
title('Best Solution History');
set(gca,'XLim',[0 num_iter+1],'YLim',[0 1.1*max([1 dist_history])]);
end
% Return Outputs
if nargout
varargout{1} = opt_rte;
varargout{2} = min_dist;
end
来自:
http://www.mathworks.com/matlabcentral/fileexchange/13680-traveling-salesman-problem-genetic-algorithm
Matlab 遗传算法求解TSP问题
最新推荐文章于 2024-08-26 11:07:32 发布