Scrapy结合Airflow构建完整数据流程

在数据驱动的世界中,企业高度依赖于有效地获取和管理数据。Web抓取成为获取数据的关键方法,而Scrapy是用于此目的的最强大的框架之一。Airflow 是用于编排工作流的 Python 工具,通过Airflow可以编排Scrapy程序及数据处理任务,实现定时执行完整数据流程。本文将介绍如何使用Scrapy和各种Python库创建端到端数据工作流。

Scrapy 和 AirFlow简介

Scrapy

Scrapy 是一个用于爬取网页数据的 Python 框架。它提供了高效的抓取机制,能同时处理多个请求。通过定义提取规则,如 XPath 或 CSS 选择器,可以精准地从网页中抽取数据,如文本、链接等。

其架构清晰,包括引擎、调度器、下载器等组件。引擎控制整个流程,调度器管理请求队列,下载器获取网页内容。Scrapy 还支持中间件来处理请求和响应,如设置代理、处理 cookies 等。它的异步 I/O 机制让爬取速度更快,适合大规模数据采集,常用于数据挖掘、信息聚合等场景。
在这里插入图片描述

Airflow

Airflow 是用于编排工作流的 Python 工具。它通过有向无环图(DAG)来定义任务及其依赖关系,使复杂的工作流程可视化。

可以将任务如数据提取、转换、加载等编排成工作流。它支持多种执行器,像本地执行器、Celery 执行器用于分布式执行。通过调度器,能够按照设定的时间间隔或触发条件自动执行任务。Airflow 还提供了丰富的操作符来定义任务类型,方便操作数据库、调用脚本等,常用于数据工程中的 ETL 流程和任务调度场景。
在这里插入图片描述

Scrapy构建爬虫项目

  • 环境准备

要开始,请确保已经安装了Python和Scrapy。如果没有,您可以使用pip轻松安装它们:

pip install scrapy

安装完成,创建Scrapy项目:

scrapy startproject myproject

Scrapy项目的目录结构:

myproject/
    scrapy.cfg
    myproject/
        __init__.py
        items.py
        middlewares.py
        pipelines.py
        settings.py
        spiders/
  • 创建爬虫任务

spider 是Scrapy项目的核心部分。它负责从网站中提取数据。导航到蜘蛛目录,为你的spider 创建一个新的Python文件,输入example_spider.py:

from scrapy import
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值