POJ 3532 基尔霍夫电流定律 + 高斯消元

题意

传送门 POJ 3532

题解

基尔霍夫电流定律( K C L KCL KCL):在集总参数电路中,任一瞬间,流入或流出电路中任一节点的电流代数和恒等于零。若规定流出为正,则流入为负, K C L KCL KCL 表示为
∑ i 出 − ∑ i 入 = 0 \sum i_{出}-\sum i_{入}=0 ii=0

根据欧姆定律,计算电导值
G = 1 / R , I = U / R = G U G=1/R,I=U/R=GU G=1/R,I=U/R=GU

对于 2 2 2 个节点间存在多个电阻 R i , j R_{i,j} Ri,j,根据电阻并联公式计算阻值,设此 2 2 2 节点 i , j i,j i,j 间等效电阻为 r i , j r_{i,j} ri,j

1 / r i , j = ∑ 1 / R i , j 1/r_{i,j}=\sum 1/R_{i,j} 1/ri,j=1/Ri,j
设各节点电势为 u i u_{i} ui ,则可以联立非节点 1 , N 1,N 1,N 的节点电流方程
{ ∑ 节 点 i 与 节 点 1 通 过 等 效 电 阻 直 接 连 接 ( u i − u 1 ) / r 1 , j = 0 … ∑ 节 点 i 与 节 点 N − 1 通 过 等 效 电 阻 直 接 连 接 ( u i − u N − 1 ) / r N − 1 , i = 0 \begin{cases} \sum_{节点i与节点1通过等效电阻直接连接}(u_{i}-u_{1})/r_{1,j}=0\\ \dots\\ \sum_{节点i与节点N-1通过等效电阻直接连接}(u_{i}-u_{N-1})/r_{N-1,i}=0 \end{cases} i1(uiu1)/r1,j=0iN1(uiuN1)/rN1,i=0

考虑到解的唯一性,取节点 0 0 0 为零电势点,取节点 N N N 为单位电势,则相当于在节点 0 , N 0,N 0,N 间加入了单位电压的电源
{ u 0 = 0 u N = 1 \begin{cases} u_{0}=0\\ u_{N}=1 \end{cases} {u0=0uN=1

联立节点方程,高斯消元求解即可。考虑到节点 0 , N 0,N 0,N 间电势差为单位电势,则节点 0 , N 0,N 0,N 间等效电阻为
R = 1 / ∑ i 0 , v R=1/\sum i_{0,v} R=1/i0,v

#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
#define min(a, b) (((a) < (b)) ? (a) : (b))
#define max(a, b) (((a) > (b)) ? (a) : (b))
#define abs(x) ((x) < 0 ? -(x) : (x))
#define INF 0x3f3f3f3f3f3f3f3f
#define delta 0.85
using namespace std;

#define maxn 105
const double EPS = 1e-8;
int N, M;
double R[maxn][maxn];

typedef vector<double> vec;
typedef vector<vec> mat;
// Ax = b
vec gauss_jordan(const mat &A, const vec &b)
{
    int n = A.size();
    mat B(n, vec(n + 1));
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            B[i][j] = A[i][j];
        }
    }
    for (int i = 0; i < n; i++)
    {
        B[i][n] = b[i];
    }
    for (int i = 0; i < n; i++)
    {
        int pivot = i;
        for (int j = i; j < n; j++)
        {
            if (abs(B[j][i]) > abs(B[pivot][i]))
            {
                pivot = j;
            }
        }
        swap(B[i], B[pivot]);
        if (abs(B[i][i]) < EPS)
            return vec();
        for (int j = i + 1; j <= n; j++)
        {
            B[i][j] /= B[i][i];
        }
        for (int j = 0; j < n; j++)
        {
            if (i != j)
            {
                for (int k = i + 1; k <= n; k++)
                    B[j][k] -= B[j][i] * B[i][k];
            }
        }
    }
    vec x(n);
    for (int i = 0; i < n; i++)
        x[i] = B[i][n];
    return x;
}

void solve()
{
    mat A(N, vec(N, 0));
    vec b(N, 0);
    A[0][0] = A[N - 1][N - 1] = 1.0;
    b[N - 1] = 1.0;
    for (int i = 1; i < N - 1; i++)
    {
        for (int j = 0; j < N; j++)
        {
            if (abs(R[i][j]) < EPS)
                continue;
            A[i][i] -= 1.0 / R[i][j], A[i][j] += 1.0 / R[i][j];
        }
    }
    vec U = gauss_jordan(A, b);
    double I = 0.0;
    for (int i = 0; i < N; i++)
    {
        if (abs(R[0][i]) < EPS)
            continue;
        I += U[i] / R[0][i];
    }
    printf("%.2f", 1.0 / I);
}

int main()
{
    while (~scanf("%d%d", &N, &M))
    {
        for (int i = 0; i < N; i++)
        {
            fill(R[i], R[i] + N, 0);
        }
        for (int i = 0; i < M; i++)
        {
            int x, y, r;
            scanf("%d%d%d", &x, &y, &r);
            --x, --y;
            R[x][y] += 1.0 / r;
            R[y][x] += 1.0 / r;
        }
        for (int i = 0; i < N; i++)
        {
            for (int j = 0; j < N; j++)
            {
                if (abs(R[i][j]) < EPS)
                    continue;
                R[i][j] = 1 / R[i][j];
            }
        }
        solve();
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值