题意
传送门 Codeforces 1277E Two Fairs
题解
求无向图中不包含 a , b a,b a,b 的无序点对数量,这些点对 ( u , v ) (u,v) (u,v) 满足 u u u 与 v v v 间的任意路径都经过 a , b a,b a,b。
若点对
(
u
,
v
)
(u,v)
(u,v) 满足
u
u
u 与
v
v
v 间的任意路径都经过
a
a
a,则将
a
a
a 和以其为端点的连边删除后,
u
,
v
u,v
u,v 属于不同的连通分量。设满足这样的点对集合为
A
A
A,对于
b
b
b 而言这样的集合为
B
B
B。根据容斥原理
A
∩
B
=
A
+
B
−
A
∪
B
A\cap B=A+B-A\cup B
A∩B=A+B−A∪B 其中
A
∩
B
A\cap B
A∩B 为所求。对于
A
,
B
,
A
∪
B
A,B,A\cup B
A,B,A∪B 都容易通过计算补集得到。
#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l, _ = r; i < _; ++i)
#define pb push_back
typedef long long ll;
const int MAXN = 2E5 + 5;
int T, N, M, A, B;
vector<int> G[MAXN];
int cc[2][MAXN];
void dfs(int id, int u, int k, int ban)
{
if (u == ban)
return;
cc[id][u] = k;
for (auto &v : G[u])
if (cc[id][v] == -1)
dfs(id, v, k, ban);
}
int main()
{
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> T;
while (T--)
{
cin >> N >> M >> A >> B;
--A, --B;
rep(i, 0, N) G[i].clear();
rep(i, 0, M)
{
int u, v;
cin >> u >> v;
--u, --v;
G[v].pb(u), G[u].pb(v);
}
rep(i, 0, 2) rep(u, 0, N) cc[i][u] = -1;
int k = 0;
rep(i, 0, N) if (cc[0][i] == -1) dfs(0, i, k++, A);
k = 0;
rep(i, 0, N) if (cc[1][i] == -1) dfs(1, i, k++, B);
map<int, int> cnt[2];
rep(i, 0, 2) rep(u, 0, N) if (u != A && u != B)++ cnt[i][cc[i][u]];
int rst = N - 2;
ll res = (ll)rst * (rst - 1);
rep(i, 0, 2) for (auto &p : cnt[i]) res -= (ll)p.second * (p.second - 1) / 2;
map<pair<int, int>, int> pcnt;
rep(i, 0, N) if (i != A && i != B)++ pcnt[{cc[0][i], cc[1][i]}];
ll t = (ll)rst * (rst - 1) / 2;
for (auto &p : pcnt)
t -= (ll)p.second * (p.second - 1) / 2;
cout << res - t << '\n';
}
return 0;
}