基于GPU的AES并行算法设计与实现 文档+代码及数据

目录
基于 GPU 的 AES 并行算法实现 1
1 引 言 2
GPU(Graphics Processing Unit,图形处理器),是最近发展起来的具有并行计算性能的单片多核处理器。设计之初, 它是用做图像和图形相关运算工作的微处理器,采用单指令多线程(Sin- gle Instruction Multiple Threads)的体系结构,可实现密集的并行计算,满足 AES 高强度的加解密需求。NVIDIA 公司提出了统一计算设备架构CUDA(Compute Unified Device Architecture) ,是一种通用并行计算平台和编程模型,为编程人员提供了使用 GPU 进行异构编程的通用编程接口,降低了 GPU 的使用门槛,极大地方便了计算机从业者使用 GPU 来实现高性能的计算。 2
2 AES 算法实现 2
由于篇幅问题,不展示状态矩阵变换操作函数具体的实现代码,可以在源代码目录下找到对应的源文件。 4
解密过程如下所示: 4
2.2.2 不同模式的加解密函数 4
输入参数 buf 为所需要加密的明文,length 指明明文长度。 4
此外,还需定义密钥结构体 AES_ctx,用于保存轮密钥和初始化向量,并定义实现密钥拓展的函数 KeyExpansion,如下所示: 4
在解密时,ECB 模式对每个密文分组分别进行解密,CBC 模式从最后一个密文分组链式向前 4
3 AES 算法并行化 5
3.1 可并行性分析 5
3.2 并行程序设计 5
ECB 加密模式的 Kernel 函数如下: 6
在主机端 CTR 模式加密过程中,每个明文分组使用 IV 加密完毕后使 IV 递增 1,以供下一个明文分组的加密使用,在 CTR 模式的 Kernel 函数中,CUDA 线程根据当前分组在所有分组中的序号,加上加密过程初始时刻的 IV,构成当前分组加密所需的 IV,从而进行分组加密。 6
4 结果和性能分析 6
首先对串行版本 AES 算法的 ECB、CBC、CTR 模式做常规正确性检验,调用上述实现函数对 64 字节(4 个分组)的明文/密文进行加解密,对比程序运行结果和标准结果,若完全一致则说明实现的加/解密程序通过正确性检验。 6
在 CUDA 编程中,由主机端调用,GPU 执行的函数需加上 关键字。此外,前面实现的单个分组的加解密函数默认只能由主机调用,若要 使 GPU 也能调用,需加上 6
4.1 实验环境 6

  1. 硬件设备 6
  2. 软件平台 7
    4.2 正确性检验 7
    以上函数的具体实现见源代码,对 64 字节(4 个分组)的明文/密文进行加解密,逐字节的比较 程序运行结果和标准结果,以此来检验结果的正确性。 7
    4.3 性能分析 7
    时,并行程序的计算时间比串行程序要长,几乎没 7
    5 结 语 8
    参考文献 8
    基于 GPU 的 AES 并行算法实现
    【摘 要】 密码学中的高级加密标准(Advanced Encryption Standard,AES),是美国联邦政府采用的一种区块加密标准,此标准用来替代原先的 DES(Data Encryption Standard),已经被多方分析且广为全世界所使用。AES 算法中一般的加密通常都是块加密,独立的块加密不能隐藏明文的模式,为解决此问题需要采用链加密模式,本文对对称加密和分组加密中的ECB、CBC、CTR 模式进行分析并实现。在大数据时代背景下,很多应用服务器面临着执行大量计算稠密的加密挑战,笔者结合专业所学的高性能计算领域的知识,对 AES 的加解密模式进行可并行性分析,使用 GPU 异构编程并行化 ECB、CTR 模式的加解密程序,实现了高性能的 AES 加解密算法。经性能分析,并行程序相对于普通串行程序有着极高的计算性能提升, 同时利用线程计数器避免了一般并行算法使明文结构暴露的问题。
    【关键词】 AES,高级加密标准,链加密模式,并行计算,GPU,CUDA,异构编程
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

本文转载自:http://www.biyezuopin.vip/onews.asp?id=15920

1. 设计目的、意义(功能描述) 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。本次大作业主要是对蒙特·卡罗方法进行并行处理,通过OpenMP、MPI、.NET、Java、Win32API等一系列并行技术和并行机制对该算法进行并行处理,从而也进一步熟悉了蒙特·卡罗方法的串行算法和并行算法实现了用蒙特·卡罗方法计算出半径为1单位的球体的体积,体会到了并行技术在实际生活中的应用。 2. 方案分析(解决方案) 蒙特·卡罗方法(Monte Carlo method)是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。球的体积可以估算为:位于点模型内随机点个数全体随机点个数的比值乘以包围盒的体积算的。 3. 设计分析 3.1 串行算法设计 假定球体用B表示,半径r=1单位,B1是包含B的参考立方体(在本例中是边长为2的正方体),在B1中产生N个均匀分布的伪随机点。对每个随机点检测其是否在B内,假设位于B内的随机点个数为N(in)(<=N),应用蒙特卡洛算法,则B的体积为 V=V1(N(in)/N) 其中V1是B1的体积。如果产生足够多的随机点,理论上可以获得任意逼近精度。 算法描述如下: BEGIN N=_MAX; FOR I=0;I<_MAX;I++ X=RANDOM(); Y=RANDOM(); Z=RANDOM(); IF (X*X+Y*Y+Z*Z)<=1 COUNT++; END IF; END FOR; BULK=V1*(COUNT/_MAX); END; 本算法主要是在参考立方体的选取上和定义的_MAX的值对结果影响较大,所以应该选择合适的数。 3.2 并行算法设计 对FOR循环进行划分使用两个处理器完成计算。例如对一个长为n的序列,首先划分得到两个长为n/2的序列,将其交给两个处理器分别处理;而后进一步划分得到四个长为n/4的序列,再分别交给四个处理器处理;如此递归下去最终得到结果。当然这是理想的划分情况,如果划分步骤不能达到平均分配的目的,那么结果的效率会相对较差。 伪代码如下: BEGIN N=_MAX; FOR1 I=0;I<_MAX/2;I++ X1=RANDOM(); Y1=RANDOM(); Z1=RANDOM(); IF (X1*X1+Y1*Y1+Z1*Z1)<=1 COUNT1++; END IF; END FOR1; FOR2 I=_MAX/2+1;I<_MAX;I++ X2=RANDOM(); Y2=RANDOM(); Z2=RANDOM(); IF (X2*X2+Y2*Y2+Z2*Z2)<=1 COUNT2++; END IF; END FOR2; BULK=V1*((COUNT1+ COUNT2)/_MAX); END; 3.3 理论加速比分析 实验中大量数据所产生的加速比比小量数据所产生的加速比要体现得更明显,并且数据生成的并行加速比随着处理器核的增加而增加。设处理器个数为p,数据量为n,由于正常情况下该快速排序算法的复杂度为O(nlogn),并行处理的时间复杂度为O(klogk),其中k=n/p,所以并行算法的时间复杂度为O((n/p)log(n/p)),理论加速比为nlogn/((n/p)log(n/p))=p+logp. 4. 功能模块实现最终结果分析 4.1 基于OpenMP的并行算法实现 4.1.1 主要功能模块实现方法 利用了OpenMP里面的#omp parallel sections将对两个for循环用两个线程并行化执行,以多线程方式并行运行程序,并行的算法步骤如下: (1)初始化_max = 10000000; (2)创建两个线程; (3)由OpenMP编译指导语句控制产生并行执行代码区段; (4)将数据存放到tianqing_count; (5)各线程调用算法得出结果; 并行算法的部分代码如下: #pragma omp parallel for private(tianqing_x,tianqing_y,tianqing_z) reduction(+:tianqing_count2) for (tianqing_i = 0; tianqing_i<tianqing_max; tianqing_i++) { tianqing_x = rand(); tianqing_x = tianqing_x / 32767; tianqing_y = rand(); tianqing_y = tianqing_y / 32767; tianqing_z = rand(); tianqing_z = tianqing_z / 32767; if ((tianqing_x*tianqing_x + tianqing_y*tianqing_y + tianqing_z*tianqing_z) work1.pSumto(b, 0, MAXN - 1)); Thread newthread1 = new Thread(thread1); 创建Work类的对象work2; ThreadStart thread2 = new ThreadStart(() => work2.pSumto(c, 0, MAXN - 1)); Thread newthread2 = new Thread(thread2); stopwatch.Start(); 启动线程1和线程2; 等待进程结束; stopwatch.Stop(); 得到结果; 4.5.2 实验加速比分析 实验中创建了两个线程,通过多次测试,得出实验结果:由上面的理论加速比分析可知,当线程数为2时,理论加速比为2+log2=3.但由于实际操作中硬件设备以及内存分配的影响,实验加速比达不到理论值3.实验加速比在2.6~2.7左右。 4.6 并行计算技术在实际系统中的应用 4.6.1 主要功能模块实现方法 该飞机订票系统主要实现了对机票的一些基本信息进行存储和管理的功能。在系统中实现了对机票信息的增删改查,考虑到查询的方便性,对机票按照航班号进行排序,而此排序方法用并行快速排序运用进来。利用OpenMP的并行技术,对机票信息按顺序排列好,并分析了实验过程中的加速比。 4.6.2 实验加速比分析 实验中创建了两个线程,通过多次测试,得出实验结果:当数据量比较大时,加速比理论在1.9左右。数据量较大时体现出来的加速比更准确。由上面的理论加速比分析可知,当线程数为2时,理论加速比为2+log2=3.但由于实际操作中硬件设备以及内存分配的影响,实验加速比达不到理论值3.实验加速比在2.2~2.4左右。 5. 设计体会 虽然没有按时完成作业,但这份报告花了我好几天的时间,从开始的搭建并行计算平台到最后的程序运行成功可以说是对我的一个锻炼。每一次的遇到问题每一次的解决问题都是一个成长。每一次遇到问题和解决问题都是一种锻炼,一种尝试,从我们上并行计算课我懂得了很多电脑硬件和软件的知识,这些可能对于我们这个专业以后都是没有机会接触的,所以我觉得选择了并行计算多核多线程技术这门课是非常正确的。对OpenMP、MPI、WIN32API、Java、.NET的并行技术有了一定的了解。在搭建MPI并行程序这块,学习的知识尤为增加,这些都是在不断的摸索、学习中学会的。 这次的大作业虽然是对以前实验的整合,但它加深了我对并行计算的印象,也使我对并行计算知识的理解更加深刻,也使我认识到了自己很多不足之处。学习并行计算的历程不会因为完成本次大作业而停止,我们是为了用知识武装大脑而学习,通过学习充实自己的生活,要努力学习,争取以后能够完成规模更大的程序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值