论文阅读:Representation Learning with Contrastive Predictive Coding

本文介绍了对比预测编码(CPC)的原理,它旨在通过最大化当前状态c与未来帧xt+k之间的互信息来学习表示。论文提出利用InfoNCE损失函数来优化这一目标,通过对比学习确保配对的ct和xt+k得分高于不配对的样本。CPC方法从直观的损失函数出发,然后用统计理论进行解释,提供了一种有效的表示学习方法。
摘要由CSDN通过智能技术生成

Representation Learning with Contrastive Predictive Coding

  • 参考一些NLP方法
  • 理解Contrastive Learning

CPC

Motivation: 该论文认为,随着预测未来更多的帧,一些noisy的低层信息会被忽略掉,更多的共享信息(该论文称之为slow features)会被提取到,这也是一些更应被关注的信息。论文举了几个例子:phonemes,object,story line.

去真正的预测未来帧并不是一件简单且必要的事情,因此论文提出学习到某种可以使得当前状态c和未来帧x之间互信息最大的表示。论文插图
MI表示:
I ( x , c ) = H ( x ) − H ( x ∣ c ) = ∑ x , c p ( x , c ) l o g p ( x ∣ c ) p ( x ) I(x,c) = H(x) - H(x|c) = \sum_{x,c}p(x,c)log\frac{p(x|c)}{p(x)} I(x,c)=H(x)H(xc)=x,cp(x,c)logp(x)p(xc)
论文中要以某种loss函数的形式来最大化当前编码 c t c_t ct与未来帧 x t + k x_{t+k} xt+k之间的互信息。
而上述MI公式中的 p ( x ∣ c ) p ( x ) \frac{p(x|c)}{p(x)} p(x)p(xc)不容易计算。CPC给出的解决方案是利用最大化所提出的InfoNCE loss来最大化MI的一个下界。

论文公式1
如上述,给定 X = { x 1 , x 2 , . . . , x N } X=\{x_1, x_2, ..., x_N\} X={ x1,x2,...,xN}其中 x n ( n ≠ i ) x_n (n \neq i) xn(n=i)采样自p(x), 而 x i x_i xi采样于 p ( x t + k ∣ c t ) p(x_{t+k}|c_t) p(xt+k

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值