高等数学&几何图形&凸优化

相关公式:积分表,三角函数,相关

附录一 相关公式_古月忻的博客-CSDN博客 20200128

基本初等函数图形及几种常用曲线

函数曲线图_指数函数, 幂函数, 对数函数曲线图.jpg

***附录二 基本初等函数图形及几种常用曲线_古月忻的博客-CSDN博客 20200203

在线绘制函数曲线图

数学符号的含义

常见概率分布及相关公式

线性代数

凸优化

凸函数和非凸函数—and why_luolang_103的博客-CSDN博客 20180914

基本初等函数求导公式和求导法则

20170604基本初等函数求导公式和求导法则.jpg

  

点乘, 叉乘

  点乘(dot product),又称点积(dot product)、内积(inner product)、数量积(scalar product),它是一种向量运算,但点乘的结果是一个标量。
  叉乘(cross product),又称叉积(cross product)、外积(outer product)、向量积(vector product)或矢量积,它是一种向量运算,叉乘的结果是一个矢量。

*** 向量和矩阵中的各种乘积总结 - 笑而不语的文章 - 知乎 20230530

向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读_牧野的博客-CSDN博客 20160902

  • 点乘BA * BC=|BA|*|BC|*cos(theta_b)
  • theta_b取值区间为[0, pi];
  • 夹角theta_b大于等于0度小于90度时,BA*BC>0;
  • 夹角theta_b等于90度时,BA*BC=0;
  • 夹角theta_b大于90度小于等于180度时,BA*BC<0;

数学基础 —— 向量运算(叉乘)_keng_s的博客-CSDN博客 20160805

  • 叉乘BAxBC=|BA|*|BC|*sin(theta_b)
  • theta_b取值区间为[0, 2*pi];
  • 转角theta_b小于180度时,BAxBC>0;
  • 夹角theta_b大于180度时,BAxBC<0;

偏导数, 微分, 全导数

20240507记:
1.偏导数
代数意义
偏导数是对一个变量求导,另一个变量当做数。
对x求偏导的话y就看作一个数,描述的是x方向上的变化率;
对y求偏导的话x就看作一个数,描述的是y方向上的变化率。
几何意义
对x求偏导是曲面z=f(x,y)在x方向上的切线;
对y求偏导是曲面z=f(x,y)在y方向上的切线。
这里再补充点,因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以还有方向导数的概念。

2.微分
偏增量:x增加时f(x,y)增量或y增加时f(x,y)增量。
偏微分: Δ x \Delta x Δx趋进于0时,偏增量的线性主要部分。
Δ z = f x ′ ( x , y ) Δ x + o ( Δ x ) \Delta z=f_x^{'}(x,y)\Delta x+o(\Delta x) Δz=fx(x,y)Δx+o(Δx)
等式右边第一项是线性主要部分,叫做函数在(x,y)点对x的偏微分。
这个等式给出了求偏微分的方法,就是用求x的偏导数来求偏微分。
全增量:x,y都增加时f(x,y)的增量。
全微分: ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2 趋于0时,全增量的线性主要部分。
同样也有求全微分公式,建立了全微分和偏导数的关系,即 d z = A Δ x + B Δ y \text dz=A\Delta x+B\Delta y dz=AΔx+BΔy,其中A就是对x求偏导,B就是对y求偏导,即线性增量 f x ′ ( x , y ) Δ x + f y ′ ( x , y ) Δ y f_x^{'}(x,y)\Delta x+f_y^{'}(x,y)\Delta y fx(x,y)Δx+fy(x,y)Δy
概念上先有导数和微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。

定义:如果函数z=f(x,y)在点 ( x , y ) (x,y) (x,y)的全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z=f(x+\Delta x,y+\Delta y)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)可表示为 Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z=A\Delta x+B\Delta y+o(\rho) Δz=AΔx+BΔy+o(ρ),其中 ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2 A , B A,B A,B不依赖于 Δ x , Δ y \Delta x,\Delta y Δx,Δy 而仅与 x , y x,y x,y有关,称函数z=f(x,y)在点 ( x , y ) (x,y) (x,y)可微,而称 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy为函数z=f(x,y)在点 ( x , y ) (x,y) (x,y)的全微分,记作dz,即 d z = A Δ x + B Δ y \text dz=A\Delta x+B\Delta y dz=AΔx+BΔy

3.全导数
全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。
复合函数求导遵循链式求导规则,分为3种情况:
(1).中间变量均为一元函数的情形,只有这时才有全导数的概念
z = f [ u , v ] , u = a ( t ) , v = b ( t ) z=f[u,v], u=a(t), v=b(t) z=f[u,v],u=a(t),v=b(t),则 z = f [ a ( t ) , b ( t ) ] z=f[a(t),b(t)] z=f[a(t),b(t)],且
全导数 d z d t = ∂ z ∂ u d u d t + ∂ z ∂ v d v d t \frac{\text dz}{\text dt}=\frac{\partial z}{\partial u}\frac{\text du}{\text dt}+\frac{\partial z}{\partial v}\frac{\text dv}{\text dt} dtdz=uzdtdu+vzdtdv
(2).中间变量均为多元函数的情形,这时只能求偏导,
z = f [ u , v ] , u = a ( x , y ) , v = b ( x , y ) z=f[u,v], u=a(x,y), v=b(x,y) z=f[u,v],u=a(x,y),v=b(x,y),则 z = f [ a ( x , y ) , b ( x , y ) ] z=f[a(x,y),b(x,y)] z=f[a(x,y),b(x,y)],且
偏导数 ∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x} xz=uzxu+vzxv
偏导数 ∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y} yz=uzyu+vzyv
(3).中间变量既有一元函数,又有多元函数的情形,这时也只能求偏导,
z = f [ u , v ] , u = a ( x , y ) , v = b ( y ) z=f[u,v], u=a(x,y), v=b(y) z=f[u,v],u=a(x,y),v=b(y),则 z = f [ a ( x , y ) , b ( y ) ] z=f[a(x,y),b(y)] z=f[a(x,y),b(y)],且
偏导数 ∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x} xz=uzxu
偏导数 ∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v d v d y \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\text dv}{\text dy} yz=uzyu+vzdydv

20240509记:

  • 偏导数符号 ∂ ∂ t ( ) \frac{\partial }{\partial t}() t() 只是一个区别于全导数符号 d d t ( ) \frac{\text d}{\text dt}() dtd() 的符号表示。
  • 当我们一看到偏导数符号 ∂ z ∂ t \frac{\partial z}{\partial t} tz 时,那么可以先直接按照链式求导规则展开列写计算导数表达式,然后再去判断 f : T → Z f:T \rightarrow Z f:TZ 是否是复合函数。
    例如,对于 z = f ( t , u , v ) z=f(t,u,v) z=f(t,u,v),看到偏导数符号 ∂ z ∂ t \frac{\partial z}{\partial t} tz,先直接按照链式求导规则展开列写计算导数表达式: ∂ z ∂ t = ∂ z ∂ t ∂ t ∂ t + ∂ z ∂ u ∂ u ∂ t + ∂ z ∂ v ∂ v ∂ t \frac{\partial \boldsymbol{z}}{\partial t}=\frac{\partial \boldsymbol{z}}{\partial t}\frac{\partial t}{\partial t}+\frac{\partial \boldsymbol{z}}{\partial u}\frac{\partial u}{\partial t}+\frac{\partial \boldsymbol{z}}{\partial v}\frac{\partial v}{\partial t} tz=tztt+uztu+vztv,接着再看 u , v u,v u,v 是不是还是 t t t 的函数,如果是的话继续计算该式即可,如果不是的话,则 ∂ u ∂ t , ∂ v ∂ t \frac{\partial u}{\partial t},\frac{\partial v}{\partial t} tu,tv均为零,该式可进一步化简为 ∂ z ∂ t = ∂ z ∂ t ∂ t ∂ t \frac{\partial \boldsymbol{z}}{\partial t}=\frac{\partial \boldsymbol{z}}{\partial t}\frac{\partial t}{\partial t} tz=tztt,也就意味着此时将其它变量 u , v u,v u,v 视作常数而直接求偏导即可。
  • 而当我们一看到全导数符号 d z d t \frac{\text dz}{\text dt} dtdz 时,那么应该先想到去判断一下 f : T → Z f:T \rightarrow Z f:TZ 是否是复合函数;如果不是的话,直接按照常规求导方式计算导数就行了;如果是复合函数的话,则中间变量必定均为一元函数(由全导数的定义可知),这时需要按照链式求导规则展开计算导数。

《202106 传递过程原理_南碎飞》第二章第一节“物理量的时间导数”及习题2-1 “某流场的速度向量为 u ( x , y , z , t ) = x y z i + y j − 3 z t k \boldsymbol{u}(x,y,z,t)=xyz\boldsymbol{i}+y\boldsymbol{j}-3zt\boldsymbol{k} u(x,y,z,t)=xyzi+yj3ztk”。
理解:题干包含了这么个意思:流场的速度矢量不仅依赖于时间 t t t,还依赖于空间位置 ( x , y , z ) (x,y,z) (x,y,z)

根据数学上的偏导数和全导数定义,流场的速度向量这一物理量对时间的偏导数可写为:
∂ u ∂ t = ∂ u ∂ t + ∂ u ∂ x ∂ x ∂ t + ∂ u ∂ y ∂ y ∂ t + ∂ u ∂ z ∂ z ∂ t \frac{\partial \boldsymbol{u}}{\partial t}=\frac{\partial \boldsymbol{u}}{\partial t}+\frac{\partial \boldsymbol{u}}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial \boldsymbol{u}}{\partial y}\frac{\partial y}{\partial t}+\frac{\partial \boldsymbol{u}}{\partial z}\frac{\partial z}{\partial t} tu=tu+xutx+yuty+zutz (A-1)。
注: u ( x , y , z , t ) \boldsymbol{u}(x,y,z,t) u(x,y,z,t) 中的 t t t 也算一个中间变量,即一元函数 t = t t=t t=t,故
∂ u ∂ t = ∂ u ∂ t ∂ t ∂ t + ∂ u ∂ x ∂ x ∂ t + ∂ u ∂ y ∂ y ∂ t + ∂ u ∂ z ∂ z ∂ t \frac{\partial \boldsymbol{u}}{\partial t}=\frac{\partial \boldsymbol{u}}{\partial t}\frac{\partial t}{\partial t}+\frac{\partial \boldsymbol{u}}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial \boldsymbol{u}}{\partial y}\frac{\partial y}{\partial t}+\frac{\partial \boldsymbol{u}}{\partial z}\frac{\partial z}{\partial t} tu=tutt+xutx+yuty+zutz,而 ∂ t ∂ t = 1 \frac{\partial t}{\partial t}=1 tt=1,从而可得到式(A-1)。此外需注意,在计算式(A-1)等号右侧的 ‘ ∂ u ∂ t \frac{\partial \boldsymbol{u}}{\partial t} tu’ 时是将其它中间变量 x , y , z x,y,z x,y,z 视作常数的,这跟等号左侧的 ‘ ∂ u ∂ t \frac{\partial \boldsymbol{u}}{\partial t} tu’ 符号含义是不同的

在流体运动学中,在空间位置 x , y , z x,y,z x,y,z 均是以时间和其它变量为自变量的多元函数的情形下, ∂ x ∂ t , ∂ y ∂ t , ∂ z ∂ t \frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}, \frac{\partial z}{\partial t} tx,ty,tz 分别代表流体微团在 x , y , z x,y,z x,y,z 方向的速度分量,并分别记作 u x , u y , u z u_x, u_y, u_z ux,uy,uz,于是式(A-1)可以写为:
∂ u ∂ t = ∂ u ∂ t + ∂ u ∂ x u x + ∂ u ∂ y u y + ∂ u ∂ z u z \frac{\partial \boldsymbol{u}}{\partial t}=\frac{\partial \boldsymbol{u}}{\partial t}+\frac{\partial \boldsymbol{u}}{\partial x}u_x+\frac{\partial \boldsymbol{u}}{\partial y}u_y+\frac{\partial \boldsymbol{u}}{\partial z}u_z tu=tu+xuux+yuuy+zuuz (A-2),由此可辅助理解流体运动学中的"随体导数(物质导数) D u D t \frac{\text D\boldsymbol{u}}{\text Dt} DtDu"的含义。

在流体运动学中,在空间位置 x , y , z x,y,z x,y,z 均只是时间的一元函数的情形下, ∂ x ∂ t , ∂ y ∂ t , ∂ z ∂ t \frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}, \frac{\partial z}{\partial t} tx,ty,tz 就分别直接写为 d x d t , d y d t , d z d t \frac{\text dx}{\text dt}, \frac{\text dy}{\text dt}, \frac{\text dz}{\text dt} dtdx,dtdy,dtdz这时有全导数的概念 ∂ u ∂ t \frac{\partial \boldsymbol{u}}{\partial t} tu 就写为 d u d t \frac{\text d\boldsymbol{u}}{\text dt} dtdu,于是式(A-1)可以写为:
d u d t = ∂ u ∂ t + ∂ u ∂ x d x d t + ∂ u ∂ y d y d t + ∂ u ∂ z d z d t \frac{\text d\boldsymbol{u}}{\text dt}=\frac{\partial \boldsymbol{u}}{\partial t}+\frac{\partial \boldsymbol{u}}{\partial x}\frac{\text dx}{\text dt}+\frac{\partial \boldsymbol{u}}{\partial y}\frac{\text dy}{\text dt}+\frac{\partial \boldsymbol{u}}{\partial z}\frac{\text dz}{\text dt} dtdu=tu+xudtdx+yudtdy+zudtdz (A-3),由此可辅助理解流体运动学中的"全导数 d u d t \frac{\text d\boldsymbol{u}}{\text dt} dtdu"的含义。

对于习题2-1,这里题干没有说 x , y , z x,y,z x,y,z 是不是 t t t 的函数,因此在碰到求 ∂ u ∂ t \frac{\partial \boldsymbol{u}}{\partial t} tu 时,将其它变量 x , y , z x,y,z x,y,z 视作常数而直接求偏导即可。在碰到求 D u D t \frac{\text D\boldsymbol{u}}{\text Dt} DtDu 时,则按照随体导数(物质导数)的定义表达式计算即可。

202106 传递过程原理_南碎飞_习题2-1.jpg

20240421记:【需背记】

  • 拉格朗日研究方法是研究流场中每一固定流体微团的运动规律,再综合某一控制体的所有流体微团的运动规律;
    通过计算流场中某一物理量对时间的随体导数(物质导数),可以得知流体微团在运动到某一空间点处,流体微团的该物理量随时间的变化率。
  • 欧拉研究方法是研究流场中每一固定空间点处的流体微团的运动状况,再综合流场的所有空间点处的流体微团的运动状况;
    通过计算流场中某一物理量对时间的偏导数,可以得知流场中该物理量在某一固定空间点处随时间的变化率。

数学建模常用算法

  • 数据处理类

    • 插值
    • 回归(多元回归、偏最小二乘法、逐步回归)
    • Apriori
  • 预测类

    • 时间序列(ARMA, AR, ARIMA)
    • 灰色预测(GM(1,1),GM(2,1),DGM(2,1),Verhulst)
    • 差分方程
    • 神经网络
  • 评价类

    • 聚类
    • 主成分分析
    • 因子分析
    • 数据包络分析(DEA)
    • 熵值法
    • 层次分析法
    • 物元法
    • 模糊综合评判法
  • 优化类

    • 线性规划、非线性规划
    • 模拟退火
    • 遗传算法
    • 粒子群算法
    • 蒙特卡洛迭代法

数学建模十五大经典数学模型_NeXT_Voyager_新浪博客 20180121
数学建模:蒙特卡罗算法(Monte Carlo Method)_何为xl的博客-CSDN博客 20200814

待补充

  

待补充

  

杂货间



文字居中

数学公式粗体 \textbf{} 或者 m e m o r y {\bf memory} memory
数学公式粗斜体 \bm{}

摘录自“bookname_author”
此文系转载,原文链接:名称 20200505

高亮颜色说明:突出重点
个人觉得,:待核准个人观点是否有误

分割线

分割线


我是颜色为00ffff的字体
我是字号为2的字体
我是颜色为00ffff, 字号为2的字体
我是字体类型为微软雅黑, 颜色为00ffff, 字号为2的字体

分割线

分割线
问题描述:
原因分析:
解决方案:

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值