附录一 相关公式

附一  积分表及其相关公式

  1. ∫ k d x = k x + C ( k 是常数 ) , \displaystyle\int k\mathrm{d}x=kx+C\quad(k\text{是常数}), kdx=kx+C(k是常数),
  2. ∫ x μ d x = x μ + 1 μ + 1 + C ( μ ≠ − 1 ) , \displaystyle\int x^\mu\mathrm{d}x=\cfrac{x^{\mu+1}}{\mu+1}+C\quad(\mu\ne-1), xμdx=μ+1xμ+1+C(μ=1),
  3. ∫ d x x = ln ⁡ ∣ x ∣ + C , \displaystyle\int\cfrac{\mathrm{d}x}{x}=\ln|x|+C, xdx=lnx+C,
  4. ∫ d x 1 + x 2 = arctan ⁡ x + C , \displaystyle\int\cfrac{\mathrm{d}x}{1+x^2}=\arctan x+C, 1+x2dx=arctanx+C,
  5. ∫ d x 1 − x 2 = arcsin ⁡ x + C , \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{1-x^2}}=\arcsin x+C, 1x2 dx=arcsinx+C,
  6. ∫ cos ⁡ x d x = sin ⁡ x + C , \displaystyle\int\cos x\mathrm{d}x=\sin x+C, cosxdx=sinx+C,
  7. ∫ sin ⁡ x d x = − cos ⁡ x + C , \displaystyle\int\sin x\mathrm{d}x=-\cos x+C, sinxdx=cosx+C,
  8. ∫ d x cos ⁡ 2 x = ∫ sec ⁡ 2 d x = tan ⁡ x + C , \displaystyle\int\cfrac{\mathrm{d}x}{\cos^2x}=\displaystyle\int\sec^2\mathrm{d}x=\tan x+C, cos2xdx=sec2dx=tanx+C,
  9. ∫ d x sin ⁡ 2 x = ∫ csc ⁡ 2 x d x = − cot ⁡ x + C , \displaystyle\int\cfrac{\mathrm{d}x}{\sin^2x}=\displaystyle\int\csc^2x\mathrm{d}x=-\cot x+C, sin2xdx=csc2xdx=cotx+C,
  10. ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C , \displaystyle\int\sec x\tan x\mathrm{d}x=\sec x+C, secxtanxdx=secx+C,
  11. ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C , \displaystyle\int\csc x\cot x\mathrm{d}x=-\csc x+C, cscxcotxdx=cscx+C,
  12. ∫ e x d x = e x + C , \displaystyle\int e^x\mathrm{d}x=e^x+C, exdx=ex+C,
  13. ∫ a x d x = a x ln ⁡ a + C , \displaystyle\int a^x\mathrm{d}x=\cfrac{a^x}{\ln a}+C, axdx=lnaax+C,
  14. ∫ s h   x d x = c h   x + C , \displaystyle\int\mathrm{sh}\ x\mathrm{d}x=\mathrm{ch}\ x+C, sh xdx=ch x+C,
  15. ∫ c h   x d x = s h   x + C , \displaystyle\int\mathrm{ch}\ x\mathrm{d}x=\mathrm{sh}\ x+C, ch xdx=sh x+C,
  16. ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C , \displaystyle\int\tan x\mathrm{d}x=-\ln|\cos x|+C, tanxdx=lncosx+C,
  17. ∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C , \displaystyle\int\cot x\mathrm{d}x=\ln|\sin x|+C, cotxdx=lnsinx+C,
  18. ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C , \displaystyle\int\sec x\mathrm{d}x=\ln|\sec x+\tan x|+C, secxdx=lnsecx+tanx+C,
  19. ∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C , \displaystyle\int\csc x\mathrm{d}x=\ln|\csc x-\cot x|+C, cscxdx=lncscxcotx+C,
  20. ∫ d x a 2 + x 2 = 1 a arctan ⁡ x a + C , \displaystyle\int\cfrac{\mathrm{d}x}{a^2+x^2}=\cfrac{1}{a}\arctan\cfrac{x}{a}+C, a2+x2dx=a1arctanax+C,
  21. ∫ d x x 2 − a 2 = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C , \displaystyle\int\cfrac{\mathrm{d}x}{x^2-a^2}=\cfrac{1}{2a}\ln|\cfrac{x-a}{x+a}|+C, x2a2dx=2a1lnx+axa+C,
  22. ∫ d x a 2 − x 2 = arcsin ⁡ x a + C , \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{a^2-x^2}}=\arcsin\cfrac{x}{a}+C, a2x2 dx=arcsinax+C,
  23. ∫ d x x 2 + a 2 = ln ⁡ ( x + x 2 + a 2 ) + C , \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x^2+a^2}}=\ln(x+\sqrt{x^2+a^2})+C, x2+a2 dx=ln(x+x2+a2 )+C,
  24. ∫ d x x 2 − a 2 = ln ⁡ ∣ x + x 2 − a 2 ∣ + C , \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x^2-a^2}}=\ln|x+\sqrt{x^2-a^2}|+C, x2a2 dx=lnx+x2a2 +C,
  25. I n = ∫ 0 π 2 cos ⁡ m u d u = ∫ 0 π 2 sin ⁡ m u d u = { m − 1 m ⋅ m − 3 m − 2 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 , m 为正偶数, m − 1 m ⋅ m − 3 m − 2 ⋅ ⋯ ⋅ 2 3 , m 为大于1的正奇数, = { 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( m − 1 ) 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ m ) ⋅ π 2 , m 为正偶数, 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( m − 1 ) 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ m , m 为大于1的奇数. \begin{aligned}I_n&=\displaystyle\int^{\frac{\pi}{2}}_0\cos^{m}u\mathrm{d}u=\displaystyle\int^{\frac{\pi}{2}}_0\sin^{m}u\mathrm{d}u\\&=\begin{cases}\cfrac{m-1}{m}\cdot\cfrac{m-3}{m-2}\cdot\cdots\cdot\cfrac{1}{2}\cdot\cfrac{\pi}{2},&\qquad m\text{为正偶数,}\\ \cfrac{m-1}{m}\cdot\cfrac{m-3}{m-2}\cdot\cdots\cdot\cfrac{2}{3},&\qquad m\text{为大于1的正奇数,} \end{cases}\\&=\begin{cases}\cfrac{1\cdot3\cdot5\cdot\cdots\cdot (m-1)}{2\cdot4\cdot6\cdot\cdots\cdot m)}\cdot\cfrac{\pi}{2},&\qquad m\text{为正偶数,}\\ \cfrac{2\cdot4\cdot6\cdot\cdots\cdot(m-1)}{1\cdot3\cdot5\cdot\cdots\cdot m},&\qquad m\text{为大于1的奇数.}\end{cases}\end{aligned} In=02πcosmudu=02πsinmudu=mm1m2m3212π,mm1m2m332,m为正偶数,m为大于1的正奇数,=246m)135(m1)2π,135m246(m1),m为正偶数,m为大于1的奇数.

附二  三角函数公式

  1. tan ⁡ α cot ⁡ α = 1 , \tan\alpha\cot\alpha=1, tanαcotα=1,
  2. sin ⁡ α csc ⁡ α = 1 , \sin\alpha\csc\alpha=1, sinαcscα=1,
  3. cos ⁡ α sec ⁡ α = 1 , \cos\alpha\sec\alpha=1, cosαsecα=1,
  4. tan ⁡ α = sin ⁡ α cos ⁡ α , \tan\alpha=\cfrac{\sin\alpha}{\cos\alpha}, tanα=cosαsinα,
  5. cot ⁡ α = cos ⁡ α sin ⁡ α , \cot\alpha=\cfrac{\cos\alpha}{\sin\alpha}, cotα=sinαcosα,
  6. sin ⁡ 2 α + cos ⁡ 2 α = 1 , \sin^2\alpha+\cos^2\alpha=1, sin2α+cos2α=1,
  7. 1 + tan ⁡ 2 α = sec ⁡ 2 α , 1+\tan^2\alpha=\sec^2\alpha, 1+tan2α=sec2α,
  8. 1 + cot ⁡ 2 α = csc ⁡ 2 α , 1+\cot^2\alpha=\csc^2\alpha, 1+cot2α=csc2α,
  9. tan ⁡ ( α + β ) = tan ⁡ α + tan ⁡ β 1 − tan ⁡ α tan ⁡ β , \tan(\alpha+\beta)=\cfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}, tan(α+β)=1tanαtanβtanα+tanβ,
  10. tan ⁡ ( α − β ) = tan ⁡ α − tan ⁡ β 1 + tan ⁡ α tan ⁡ β , \tan(\alpha-\beta)=\cfrac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}, tan(αβ)=1+tanαtanβtanαtanβ,
  11. cot ⁡ ( α + β ) = cot ⁡ α cot ⁡ β − 1 cot ⁡ α + cot ⁡ β , \cot(\alpha+\beta)=\cfrac{\cot\alpha\cot\beta-1}{\cot\alpha+\cot\beta}, cot(α+β)=cotα+cotβcotαcotβ1,
  12. cot ⁡ ( α − β ) = cot ⁡ α cot ⁡ β + 1 cot ⁡ α − cot ⁡ β , \cot(\alpha-\beta)=\cfrac{\cot\alpha\cot\beta+1}{\cot\alpha-\cot\beta}, cot(αβ)=cotαcotβcotαcotβ+1,
  13. sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α , \sin2\alpha=2\sin\alpha\cos\alpha, sin2α=2sinαcosα,
  14. cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α , \cos2\alpha=\cos^2\alpha-\sin^2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha, cos2α=cos2αsin2α=2cos2α1=12sin2α,
  15. tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α , \tan2\alpha=\cfrac{2\tan\alpha}{1-\tan^2\alpha}, tan2α=1tan2α2tanα,
  16. sin ⁡ 3 α = 3 sin ⁡ α − 4 sin ⁡ 3 α , \sin3\alpha=3\sin\alpha-4\sin^3\alpha, sin3α=3sinα4sin3α,
  17. cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α , \cos3\alpha=4\cos^3\alpha-3\cos\alpha, cos3α=4cos3α3cosα,
  18. sin ⁡ α = 2 tan ⁡ α 2 1 + tan ⁡ 2 α 2 , \sin\alpha=\cfrac{2\tan\cfrac{\alpha}{2}}{1+\tan^2\cfrac{\alpha}{2}}, sinα=1+tan22α2tan2α,
  19. cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 \cos\alpha=\cfrac{1-\tan^2\cfrac{\alpha}{2}}{1+\tan^2\cfrac{\alpha}{2}} cosα=1+tan22α1tan22α
  20. sin ⁡ α sin ⁡ β = 1 2 [ cos ⁡ ( α − β ) − cos ⁡ ( α + β ) ] , \sin\alpha\sin\beta=\cfrac{1}{2}[\cos(\alpha-\beta)-\cos(\alpha+\beta)], sinαsinβ=21[cos(αβ)cos(α+β)],
  21. cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] , \cos\alpha\cos\beta=\cfrac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)], cosαcosβ=21[cos(α+β)+cos(αβ)],
  22. sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] , \sin\alpha\cos\beta=\cfrac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)], sinαcosβ=21[sin(α+β)+sin(αβ)],
  23. cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] , \cos\alpha\sin\beta=\cfrac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)], cosαsinβ=21[sin(α+β)sin(αβ)],
  24. sin ⁡ α + sin ⁡ β = 2 sin ⁡ ( α + β 2 ) cos ⁡ ( α − β 2 ) , \sin\alpha+\sin\beta=2\sin\left(\cfrac{\alpha+\beta}{2}\right)\cos\left(\cfrac{\alpha-\beta}{2}\right), sinα+sinβ=2sin(2α+β)cos(2αβ),
  25. sin ⁡ α − sin ⁡ β = 2 cos ⁡ ( α + β 2 ) sin ⁡ ( α − β 2 ) , \sin\alpha-\sin\beta=2\cos\left(\cfrac{\alpha+\beta}{2}\right)\sin\left(\cfrac{\alpha-\beta}{2}\right), sinαsinβ=2cos(2α+β)sin(2αβ),
  26. cos ⁡ α + cos ⁡ β = 2 cos ⁡ ( α + β 2 ) cos ⁡ ( α − β 2 ) , \cos\alpha+\cos\beta=2\cos\left(\cfrac{\alpha+\beta}{2}\right)\cos\left(\cfrac{\alpha-\beta}{2}\right), cosα+cosβ=2cos(2α+β)cos(2αβ),
  27. cos ⁡ α − cos ⁡ β = − 2 sin ⁡ ( α + β 2 ) sin ⁡ ( α − β 2 ) , \cos\alpha-\cos\beta=-2\sin\left(\cfrac{\alpha+\beta}{2}\right)\sin\left(\cfrac{\alpha-\beta}{2}\right), cosαcosβ=2sin(2α+β)sin(2αβ),
  28. ∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x , \displaystyle\int^{\frac{\pi}{2}}_0f(\sin x)\mathrm{d}x=\displaystyle\int^{\frac{\pi}{2}}_0f(\cos x)\mathrm{d}x, 02πf(sinx)dx=02πf(cosx)dx,
  29. ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x , \displaystyle\int^{\pi}_0xf(\sin x)\mathrm{d}x=\cfrac{\pi}{2}\displaystyle\int^{\pi}_0f(\sin x)\mathrm{d}x, 0πxf(sinx)dx=2π0πf(sinx)dx,
  30. ( ∫ a b f ( x ) g ( x ) d x ) 2 ⩽ ∫ a b f 2 ( x ) d x ⋅ ∫ a b g 2 ( x ) d x , \left(\displaystyle\int^b_af(x)g(x)\mathrm{d}x\right)^2\leqslant\displaystyle\int^b_af^2(x)\mathrm{d}x\cdot\displaystyle\int^b_ag^2(x)\mathrm{d}x, (abf(x)g(x)dx)2abf2(x)dxabg2(x)dx, f ( x ) f(x) f(x) g ( x ) g(x) g(x)在区间 [ a , b ] [a,b] [a,b]上均连续,柯西-施瓦茨不等式)
  31. ( ∫ a b [ f ( x ) + g ( x ) ] 2 d x ) 1 2 ⩽ ( ∫ a b f 2 ( x ) d x ) 1 2 + ( ∫ a b g 2 ( x ) d x ) 1 2 , \left(\displaystyle\int^b_a[f(x)+g(x)]^2\mathrm{d}x\right)^{\cfrac{1}{2}}\leqslant\left(\displaystyle\int^b_af^2(x)\mathrm{d}x\right)^{\cfrac{1}{2}}+\left(\displaystyle\int^b_ag^2(x)\mathrm{d}x\right)^{\cfrac{1}{2}}, (ab[f(x)+g(x)]2dx)21(abf2(x)dx)21+(abg2(x)dx)21, f ( x ) f(x) f(x) g ( x ) g(x) g(x)在区间 [ a , b ] [a,b] [a,b]上均连续,闵可夫斯基不等式)
  32. e i x = cos ⁡ x + i sin ⁡ x . e^{ix}=\cos x+i\sin x. eix=cosx+isinx.(欧拉公式)

附三   Γ \Gamma Γ函数及其性质

  1. Γ ( s ) = ∫ 0 + ∞ e − x x s − 1 d x ( s > 0 ) , \Gamma(s)=\displaystyle\int^{+\infty}_0e^{-x}x^{s-1}\mathrm{d}x\qquad(s>0), Γ(s)=0+exxs1dx(s>0),
  2. Γ ( s + 1 ) = s Γ ( s ) ( s > 0 ) , \Gamma(s+1)=s\Gamma(s)\qquad(s>0), Γ(s+1)=sΓ(s)(s>0),
  3. lim ⁡ s → 0 + Γ ( s ) → + ∞ , \lim\limits_{s\to0^+}\Gamma(s)\to+\infty, s0+limΓ(s)+,
  4. Γ ( s ) Γ ( 1 − s ) = π sin ⁡ π s ( 0 < s < 1 ) , \Gamma(s)\Gamma(1-s)=\cfrac{\pi}{\sin\pi s}\qquad(0<s<1), Γ(s)Γ(1s)=sinπsπ(0<s<1),
  5. Γ ( 1 2 ) = π . \Gamma\left(\cfrac{1}{2}\right)=\sqrt{\pi}. Γ(21)=π .

附四  定积分和导数在几何上的应用

  1. 曲率: K = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 ; K=\cfrac{|y''|}{(1+y'^2)^{\frac{3}{2}}}; K=(1+y2)23y;
  2. 曲率半径: ρ = 1 K = ( 1 + y ′ 2 ) 3 2 ∣ y ′ ′ ∣ ; \rho=\cfrac{1}{K}=\cfrac{(1+y'^2)^{\frac{3}{2}}}{|y''|}; ρ=K1=y(1+y2)23;
  3. 曲线 y = f ( x ) ( f ( x ) ⩾ 0 ) y=f(x)(f(x)\geqslant0) y=f(x)(f(x)0)及直线 x = a , x = b ( a < b ) x=a,x=b(a<b) x=a,x=b(a<b) x x x轴所围成的曲边梯形面积 A A A A = ∫ a b f ( x ) d x ; A=\displaystyle\int^b_af(x)\mathrm{d}x; A=abf(x)dx;
  4. 极坐标系下曲线 ρ = ρ ( θ ) ( ρ ( θ ) ⩾ 0 ) \rho=\rho(\theta)(\rho(\theta)\geqslant0) ρ=ρ(θ)(ρ(θ)0)及射线 θ = α , θ = β ( 0 < β − α ⩽ 2 π ) \theta=\alpha,\theta=\beta(0<\beta-\alpha\leqslant2\pi) θ=α,θ=β(0<βα2π)曲边扇形的面积 A A A A = 1 2 ∫ α β [ ρ ( θ ) ] 2 d θ ; A=\cfrac{1}{2}\displaystyle\int^\beta_\alpha[\rho(\theta)]^2\mathrm{d}\theta; A=21αβ[ρ(θ)]2dθ;
  5. 连续曲线 y = f ( x ) y=f(x) y=f(x)、直线 x = a x=a x=a x = b x=b x=b x x x轴所围成的曲边梯形绕轴转一周形成的旋转体体积 V V V V = π ∫ a b [ f ( x ) ] 2 d x V=\pi\displaystyle\int^b_a[f(x)]^2\mathrm{d}x V=πab[f(x)]2dx
  6. 设为垂直于定轴轴的截面面积函数为 A ( x ) A(x) A(x),则该立方体在区间 [ a , b ] [a,b] [a,b]之间的体积 V V V V = ∫ a b A ( x ) d x ; V=\displaystyle\int^b_aA(x)\mathrm{d}x; V=abA(x)dx;
  7. 曲线弧长 s s s s = ∫ a b 1 + y ′ 2 d x ; s=\displaystyle\int^b_a\sqrt{1+y'^2}\mathrm{d}x; s=ab1+y2 dx;
  8. 参数方程 { x = φ ( t ) , y = ψ ( t ) ( α ⩽ t ⩽ β ) \begin{cases}x=\varphi(t),\\y=\psi(t)\end{cases}\quad(\alpha\leqslant t\leqslant\beta) {x=φ(t),y=ψ(t)(αtβ)的曲线弧长 s s s s = ∫ α β φ ′ 2 ( t ) + ψ 2 ( t ) d t ; s=\displaystyle\int^\beta_\alpha\sqrt{\varphi'^2(t)+\psi^2(t)}\mathrm{d}t; s=αβφ2(t)+ψ2(t) dt;
  9. 极坐标系下曲线 ρ = ρ ( θ ) ( α ⩽ θ ⩽ β ) \rho=\rho(\theta)\quad(\alpha\leqslant\theta\leqslant\beta) ρ=ρ(θ)(αθβ)的曲线弧长 s s s s = ∫ α β ρ 2 ( θ ) + ρ ′ 2 ( θ ) d θ . s=\displaystyle\int^\beta_\alpha\sqrt{\rho^2(\theta)+\rho'^2(\theta)}\mathrm{d}\theta. s=αβρ2(θ)+ρ2(θ) dθ.

附五  部分函数展开式

  1. e x = ∑ n = 0 ∞ 1 n ! x n ( − ∞ < x < ∞ ) ; e^x=\sum^{\infty}\limits_{n=0}\cfrac{1}{n!}x^n\quad(-\infty<x<\infty); ex=n=0n!1xn(<x<);
  2. sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 ( − ∞ < x < ∞ ) ; \sin x=\sum^{\infty}\limits_{n=0}\cfrac{(-1)^n}{(2n+1)!}x^{2n+1}\quad(-\infty<x<\infty); sinx=n=0(2n+1)!(1)nx2n+1(<x<);
  3. 1 x + 1 = ∑ n = 0 ∞ ( − 1 ) n x n ( − 1 < x < 1 ) ; \cfrac{1}{x+1}=\sum^{\infty}\limits_{n=0}(-1)^nx^n\quad(-1<x<1); x+11=n=0(1)nxn(1<x<1);
  4. ln ⁡ ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 n x n ( − 1 < x ⩽ 1 ) ; \ln(1+x)=\sum^{\infty}\limits_{n=1}\cfrac{(-1)^{n-1}}{n}x^n\quad(-1<x\leqslant1); ln(1+x)=n=1n(1)n1xn(1<x1);
  5. cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n ( − ∞ < x < ∞ ) ; \cos x=\sum^{\infty}\limits_{n=0}\cfrac{(-1)^n}{(2n)!}x^{2n}\quad(-\infty<x<\infty); cosx=n=0(2n)!(1)nx2n(<x<);
  6. a x = ∑ n = 0 ∞ ( ln ⁡ a ) n n ! x n ( − ∞ < x < ∞ ) ; a^x=\sum^{\infty}\limits_{n=0}\cfrac{(\ln a)^n}{n!}x^n\quad(-\infty<x<\infty); ax=n=0n!(lna)nxn(<x<);
  7. 1 1 + x 2 = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( − 1 < x < 1 ) ; \cfrac{1}{1+x^2}=\sum^{\infty}\limits_{n=0}(-1)^nx^{2n}\quad(-1<x<1); 1+x21=n=0(1)nx2n(1<x<1);
  8. arctan ⁡ x = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 ( − 1 ⩽ x ⩽ 1 ) . \arctan x=\sum^{\infty}\limits_{n=0}\cfrac{(-1)^n}{2n+1}x^{2n+1}\quad(-1\leqslant x\leqslant1). arctanx=n=02n+1(1)nx2n+1(1x1).

未完待续。。。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值