论文题目:Convolutional LSTM Network: A Machine LearningApproach for Precipitation Nowcasting
参考的学习文章:https://blog.csdn.net/m0_64557752/article/details/125882525
文章出处:https://arxiv.org/abs/1506.04214v1
代码:https://github.com/xinxuann/ConvLSTM_pytorch
点击查看代码
import torch
import torch.nn as nn
from torch.autograd import Variable
class ConvLSTMCell(nn.Module):
def __init__(self, input_channels, hidden_channels, kernel_size):
super(ConvLSTMCell, self).__init__()
assert hidden_channels % 2 == 0
self.input_channels = input_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.num_features = 4
self.padding = int((kernel_size - 1) / 2)
self.Wxi = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True)
self.Whi = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False)
self.Wxf = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True)
self.Whf = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False)
self.Wxc = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True)
self.Whc = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False)
self.Wxo = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True)
self.Who = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False)
self.Wci = None
self.Wcf = None
self.Wco = None
def forward(self, x, h, c):
ci = torch.sigmoid(self.Wxi(x) + self.Whi(h) + c * self.Wci)
cf = torch.sigmoid(self.Wxf(x) + self.Whf(h) + c * self.Wcf)
cc = cf * c + ci * torch.tanh(self.Wxc(x) + self.Whc(h))
co = torch.sigmoid(self.Wxo(x) + self.Who(h) + cc * self.Wco)
ch = co * torch.tanh(cc)
return ch, cc
def init_hidden(self, batch_size, hidden, shape):
if self.Wci is None:
self.Wci = nn.Parameter(torch.zeros(1, hidden, shape[0], shape[1])).cuda()
self.Wcf = nn.Parameter(torch.zeros(1, hidden, shape[0], shape[1])).cuda()
self.Wco = nn.Parameter(torch.zeros(1, hidden, shape[0], shape[1])).cuda()
else:
assert shape[0] == self.Wci.size()[2], 'Input Height Mismatched!'
assert shape[1] == self.Wci.size()[3], 'Input Width Mismatched!'
return (Variable(torch.zeros(batch_size, hidden, shape[0], shape[1])).cuda(),
Variable(torch.zeros(batch_size, hidden, shape[0], shape[1])).cuda())
class ConvLSTM(nn.Module):
# input_channels corresponds to the first input feature map
# hidden state is a list of succeeding lstm layers.
def __init__(self, input_channels, hidden_channels, kernel_size, step=1, effective_step=[1]):
super(ConvLSTM, self).__init__()
self.input_channels = [input_channels] + hidden_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.num_layers = len(hidden_channels)
self.step = step
self.effective_step = effective_step
self._all_layers = []
for i in range(self.num_layers):
name = 'cell{}'.format(i)
cell = ConvLSTMCell(self.input_channels[i], self.hidden_channels[i], self.kernel_size)
setattr(self, name, cell)
self._all_layers.append(cell)
def forward(self, input):
internal_state = []
outputs = []
for step in range(self.step):
x = input
for i in range(self.num_layers):
# all cells are initialized in the first step
name = 'cell{}'.format(i)
if step == 0:
bsize, _, height, width = x.size()
(h, c) = getattr(self, name).init_hidden(batch_size=bsize, hidden=self.hidden_channels[i],
shape=(height, width))
internal_state.append((h, c))
# do forward
(h, c) = internal_state[i]
x, new_c = getattr(self, name)(x, h, c)
internal_state[i] = (x, new_c)
# only record effective steps
if step in self.effective_step:
outputs.append(x)
return outputs, (x, new_c)
if __name__ == '__main__':
# gradient check
convlstm = ConvLSTM(input_channels=512, hidden_channels=[128, 64, 64, 32, 32], kernel_size=3, step=5,
effective_step=[4]).cuda()
loss_fn = torch.nn.MSELoss()
input = Variable(torch.randn(1, 512, 64, 32)).cuda()
target = Variable(torch.randn(1, 32, 64, 32)).double().cuda()
output = convlstm(input)
output = output[0][0].double()
res = torch.autograd.gradcheck(loss_fn, (output, target), eps=1e-6, raise_exception=True)
print(res)