2、敏捷与规范:软件及 IT 服务开发的平衡之道

敏捷与规范:软件及 IT 服务开发的平衡之道

1. 敏捷方法概述

敏捷方法如今在行业从业者和学术界研究人员中都得到了广泛认可。虽然敏捷过程没有绝对的定义,但它是一系列以小而渐进的迭代方式开发软件的方法和技术。其主要特征包括:
- 向客户进行多次、短期且快速的发布。
- 用户参与软件定义并持续提供反馈。
- 增量式设计与开发。
- 持续的非正式沟通,减少正式文档。
- 对业务、需求和环境的变化有较高的预期和准备。

早期软件工程中,一些从业者就开始研究和实践具有持续集成的增量式和演进式开发。但敏捷方法与传统过程有很大不同,传统过程涉及大型组织、长开发周期、正式且复杂的步骤、大量文档、明确但僵化的需求以及较少的用户交互。自肯·贝克首次撰写关于最早的敏捷方法之一——极限编程(XP)以来,大约已经过去了二十年。从一开始,敏捷过程就不仅仅是一个技术开发过程,还包含了许多管理和以人为本的方面。如今,Scrum 是最常用的敏捷方法之一,从业者也在根据具体环境对敏捷方法进行修改、改进和调整。

2. 相关研究内容涵盖领域

相关研究聚焦于敏捷方法及相关主题,内容广泛,涵盖以下方面:
| 研究领域 | 具体内容 |
| — | — |
| 深入分析 | 对敏捷方法进行深入剖析,探讨遇到的诸多挑战并提出解决方案。 |
| 对比分析 | 比较敏捷方法与传统方法在各个方面的优缺点。 |
| 案例研究 | 研究在实际商业应用开发中运用和调整敏捷实践的案例。 |
| 新改进介绍 | 介绍对敏捷方法进行的各种新改进和调整。 |
| 架构评估 | 评估敏捷方法在不同架构结构中

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化训练,到执行分类及结果优化的完整流程,并介绍了精度评价通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置结果后处理环节,充分利用ENVI Modeler进行自动化建模参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值