上期我们介绍了2020年知识图谱最新权威综述论文《A Survey on Knowledge Graphs: Representation, Acquisition and Applications》的知识表示学习部分,本期我们将一起学习这篇论文的知识图谱补全部分。
论文地址:
https://arxiv.org/pdf/2002.00388.pdfarxiv.org
由于知识图谱的不完整性,知识图谱补全可以用来向知识图谱中添加新的三元组。典型的知识图谱补全子任务包括链接预测,实体预测和关系预测。
对知识图谱补全的主要研究集中于学习用于三元组预测的低维嵌入。但是,其中大多数未能捕捉多步关系。因此,最近的工作转向探索多步关系路径并结合逻辑规则,分别称为关系路径推断和基于规则的推理。在本节中,还将对三元组分类作为知识图谱补全的一项相关任务进行评估,该任务可评估事实三元组的正确性。
1. 基于嵌入的模型
以实体预测为例,如下图所示的基于嵌入的排序方法,首先基于现有三元组学习嵌入向量,然后用每个实体替换尾实体或头实体,以计算所有候选实体的得分,并对前k个实体进行排名。上一期提到的知识图谱表示学习的方法(例如TransE,TransH,TransR,HolE和R-GCN等)和带有文本信息的联合学习方法(例如DKRL )可用于知识图谱补全。
与在统一嵌入空间中表示输入和候选项不同,ProjE [65]提出了通过对输入三元组的已知部分(即(h; r;?)或(