知识图谱最新权威综述论文解读:知识图谱补全部分

上期我们介绍了2020年知识图谱最新权威综述论文《A Survey on Knowledge Graphs: Representation, Acquisition and Applications》的知识表示学习部分,本期我们将一起学习这篇论文的知识图谱补全部分。

论文地址:

https://arxiv.org/pdf/2002.00388.pdf​arxiv.org

 

由于知识图谱的不完整性,知识图谱补全可以用来向知识图谱中添加新的三元组。典型的知识图谱补全子任务包括链接预测,实体预测和关系预测。

对知识图谱补全的主要研究集中于学习用于三元组预测的低维嵌入。但是,其中大多数未能捕捉多步关系。因此,最近的工作转向探索多步关系路径并结合逻辑规则,分别称为关系路径推断和基于规则的推理。在本节中,还将对三元组分类作为知识图谱补全的一项相关任务进行评估,该任务可评估事实三元组的正确性。

1. 基于嵌入的模型

以实体预测为例,如下图所示的基于嵌入的排序方法,首先基于现有三元组学习嵌入向量,然后用每个实体替换尾实体或头实体,以计算所有候选实体的得分,并对前k个实体进行排名。上一期提到的知识图谱表示学习的方法(例如TransE,TransH,TransR,HolE和R-GCN等)和带有文本信息的联合学习方法(例如DKRL )可用于知识图谱补全。

与在统一嵌入空间中表示输入和候选项不同,ProjE [65]提出了通过对输入三元组的已知部分(即(h; r;?)或(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值