元学习
文章平均质量分 94
_Summer tree
这个作者很懒,什么都没留下…
展开
-
Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-ID
方法概述 学习通过基于记忆的多源元学习来生成未知领域的行人重识别。 1, 文章提出了一种多源域元学习框架,可以模仿域生成(DG)的训练-测试过程。 该方法增强了模型学习域无关表示并增强了泛化能力。 2, 文章在框架中配备了memory-based 模块,以非参数方式现实了身份损失,可以防止由传统参数方式导致的不稳定的优化。 3, 提出了MetaBN来生成各种元测试特征,这些特征可以直接注入到我们的元学习框架中,并得到进一步的改进。 文章目录方法概述内容概要工作概述成果概述方法详解方法框架算法描述具体实现.原创 2021-11-08 21:38:52 · 700 阅读 · 0 评论 -
百面深度学习:基于度量学习的元学习模型
文章目录Q1 元学习中非参数方法相比于参数方法的优点?Q2 如何用度量学习和注意力机制来改造基于最邻近的元学习方法? 基于度量学习(Metric Learning)的元学习方法,是基于最邻近方法的元学习的延伸。 知识点: 灾难性忘却(catastrophic forgetting)、 度量学习、外部记忆、注意力机制 Q1 元学习中非参数方法相比于参数方法的优点? 非参数方法: 在新任务上没有参数学习的过程 参数方法:在新任务上需要继续微调模型 参数方法的缺点: 训练使得新任务的学习过程比较慢,达不到快原创 2021-06-22 17:21:53 · 2390 阅读 · 0 评论 -
【CRR-FMM】A Concise Review of Recent Few-shot Meta-learning Methods
【CRR-FMM】A Concise Review of Recent Few-shot Meta-learning Methods1 IntroductionMindMap2. The Framework of Few-shot Meta-learning2.1. Notation and definitionsDefinition 1. (Small-sample learning)Definition 2. (Few-shot learning)Definition 3. (Few-shot met.原创 2020-05-29 19:16:30 · 497 阅读 · 0 评论