NeRF
文章平均质量分 83
_Summer tree
这个作者很懒,什么都没留下…
展开
-
Magic3D: High-Resolution Text-to-3D Content Creation(高分辨率文本到3d内容创建)
在第一阶段,我们使用eDiff-I[2]中描述的基础扩散模型,它类似于DreamFusion中使用的Imagen[38]的基础扩散模型。具体来说,我们使用来自即时NGP[27]的基于密度的体素修剪方法,以及基于八叉树的射线采样和渲染算法[46]。我们的方法被称为Magic3D,可以在40分钟内创建高质量的3D网格模型,这比DreamFusion快2倍(据报道平均需要1.5小时),同时也实现了更高的分辨率。Magic3D是一个两阶段的从粗到精的框架,使用高效的场景模型,实现高分辨率的文本到3d合成(图2)。原创 2023-07-13 08:58:19 · 1394 阅读 · 1 评论 -
Vox-E: Text-guided Voxel Editing of 3D Objects(3D目标的文本引导体素编辑)
最后,我们继承了体积表示的局限性。请注意,与最近的神经 3D 场景表示(包括 ReLU Fields)相比,我们没有对视图相关的外观效应进行建模,因为我们发现当以 2D 基于扩散的模型引导时,它会导致不希望的伪影。在上一节中描述的初始体素网格 Gi的基础上,我们通过优化 Ge 来执行文本引导的对象编辑,Ge 是一个网格,表示从 Gi 初始化的编辑对象。我们引入了一种新的体积正则化损失,直接在3D空间中操作,利用我们的3D表示的显式性质来加强原始和编辑对象的全局结构之间的相关性。原创 2023-07-01 09:27:31 · 797 阅读 · 0 评论 -
【NeRF大总结】基于NeRF的三维视觉年度进展报告
NeRF:基于可微体渲染和神经场三维表征的新视角合成方法。隐式神经场:用基于坐标的全连接网络标识颜色场与体密度场体渲染公式:将颜色场合体密度场渲染为图像。原创 2023-06-21 09:06:56 · 7340 阅读 · 0 评论 -
[论文解析] Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation
In this paper, we formulate and identify the sources of the Janus problem in zero-shot text-to-3D generation. In this light, we argue that debiasing the prompts and raw 2D scores is essential for the realistic generation. Therefore, we propose two methods原创 2023-04-06 10:36:48 · 658 阅读 · 1 评论 -
[论文解析] DreamBooth3D: Subject-Driven Text-to-3D Generation
In this paper, we have proposed DreamBooth3D , a method for subject-driven text-to-3D generation. Given a few (3-6) casual image captures of a subject (without any additional information such as camera pose), we generate subject-specific 3D assets that als原创 2023-04-04 11:30:00 · 1258 阅读 · 0 评论 -
【论文解析】NeRFInvertor: High Fidelity NeRF-GAN Inversion for Single-shot Real Image Animation
在图像空间监督下,经过微调的模型很好地重构了原始视图中的输入,但容易对输入图像进行过拟合,导致新视图合成图像产生伪影,导致被测对象的三维几何不准确。与现有的图像空间损失Limg相比,在图10和表2中显示了所提出的隐几何正则化(Limp)、显式几何正则化(Lexp)和掩码正则化(全模型)的影响。为了去除伪影并获得更精确的几何形状,我们通过一个掩模来增强几何和图像的正则化,这是基于输入图像上的抠图信息。通常情况下,生成的图像与真实图像之间会有差距,因为在NeRF-GANs中,真实图像大多是域外样本。原创 2023-01-31 19:24:48 · 685 阅读 · 2 评论 -
[论文解析] NeRDi: Single-View NeRF Synthesis with Language-Guided Diffusion as General Image Priors
虽然公式化的优化适用于任何场景,但它更适合于以物体为中心的图像,因为它采取的基本假设是,场景从任何视图都具有完全相同的语义,这对于由于视图变化和遮挡而具有复杂配置的大型场景来说是不正确的。在图3的顶行中,我们显示了从左侧的输入图像中生成的带有标题“产品集合”的图像。虽然它们的语义相对于语言描述是高度准确的,但是生成的图像在其视觉模式中具有非常高的方差,并且与输入图像的相关性很低。首行:虽然它们的语义相对于语言描述是高度准确的,但是生成的图像在其视觉模式中具有非常高的方差,并且与输入图像的相关性很低。原创 2023-01-03 17:59:15 · 1185 阅读 · 0 评论 -
[论文解析] NeRF-Art: Text-Driven Neural Radiance Fields Stylization
不同于现有的方法,在风格化过程中需要网格引导或在风格化中捕获不足的几何变形和纹理细节,我们的方法同时调节其几何和外观以匹配所需的风格,并仅通过文本引导显示几何变形和纹理细节的视觉愉悦结果。CLIP-NeRF风格化的NeRF使用绝对方向损失,我们只在鼻子和头发上看到了足够的“野兽派”风格的风格化,但男人的脸颊还没有完全风格化。(不同于以前的方法,要么缺乏足够的几何变形和纹理细节,要么需要网格来引导风格化,我们的方法可以将3D场景转移到目标风格,其特征是所需的几何和外观变化,而无需任何网格引导)原创 2022-12-27 13:37:48 · 1291 阅读 · 1 评论 -
[论文解析]CLIP-NeRF: Text-and-Image Driven Manipulation of Neural Radiance Fields
利用预训练的CLIP 模型来学习两个code mappers, 用于将CLIP 特征映射到 用于修改形状和外观的code.具体地,给定一个文本提示或者一个样本图像 作为我们的condition,我们用预训练的CLIP模型提取特征,并将特征提供给 code mappers,由此在潜在空间中产生局部位移以编辑形状和外观code.我们设计了基于CLIP的损失来加强输入约束和输出渲染之间的CLIP空间一致性,从而支持高分辨率的NERF操作。原创 2022-12-13 15:40:01 · 1003 阅读 · 0 评论 -
[论文解析]DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION
为了从文本合成一个场景,我们初始化一个具有随机权重的NeRF类模型,然后从随机的摄像机位置和角度重复渲染该NeRF的视图,使用这些渲染作为封装在Imagen周围的得分提取损失函数的输入。相反,我们的MLP参数化了表面本身的颜色,然后通过我们控制的照明来照亮它(这个过程通常称为“着色”)。和Dreamfields的不同:我们采用了类似于Dream Fields的方法,但将CLIP替换为2D扩散模型蒸馏产生的损失。我们的工作建立在文本到图像的扩散模型上,在文本嵌入y的基础上学习。原创 2022-12-11 22:49:39 · 6622 阅读 · 2 评论 -
[论文解析] HeadNeRF: A Realtime NeRF-based Parametric Head Model
在本文中,我们提出了一种新的基于nerf的参数化头部模型HeadNeRF,它将神经辐射场集成到头部的参数表示中。它可以在GPU上实时渲染高保真的头部图像,支持直接控制生成的图像的渲染姿态和各种语义属性。与现有的相关参数化模型不同,HeadNeRF采用神经辐射场代替传统的三维纹理网格作为新的三维代理,使得HeadNeRF能够生成高保真图像。克服的困难:原始NeRF的渲染过程计算量大,阻碍了参数NeRF模型的构建原创 2022-12-07 22:01:02 · 1294 阅读 · 0 评论 -
【2020 ECCV】NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
To render this neural radiance field (NeRF) from a particular viewpoint:An overview of our neural radiance field scene representation and differentiable rendering procedure:(x, d) → (c,σ)The expected原创 2022-11-17 20:49:33 · 367 阅读 · 0 评论 -
【论文解析】Deep Generative Models on 3D Representations: A Survey
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and gene原创 2022-11-16 17:00:03 · 798 阅读 · 0 评论 -
【论文解析】Seeing 3D objects in a Single Image via Self-supervised static-Dynamicdisentanglement 【1】
本文作者提出了一种基于自监督学习的3D场景表示学习方法,并将得到的3D表示分解为静态和动态的场景元素。虽然本文方法是在多视图数据集上进行训练,但是在测试阶段,模型可以从单个静态图像出发对整体场景进行三维重建。此外,作者结合神经平面图和本文推出的静态-动态分解机制,可以得到更加丰富的3D场景表示,其为很多下游以对象为中心的3D分析任务提供了一种数据高效的解决方案,例如3D实例分割、3D目标检测和3D场景编辑。原创 2022-09-07 17:13:27 · 911 阅读 · 0 评论 -
【深蓝学院】- Multiplane Images and Neural Rendering
multiplane images and neural rendering原创 2022-09-05 17:13:40 · 667 阅读 · 0 评论 -
【深蓝学院】基于NeRF的三维场景重建和理解(beyond Novel view synthesis NeRF+X)
基于NeRF的三维场景重建和理解(beyond Novel view synthesis NeRF+X)原创 2022-09-05 12:03:52 · 1622 阅读 · 0 评论 -
【深蓝学院】基于NeRF的三维内容生成 High-quality 3D Content Creation from Images
基于NeRF 的三维内容生成原创 2022-08-25 15:22:42 · 1021 阅读 · 0 评论 -
【NeRF】背景、改进、应用与发展
推荐阅读:Neural Fields in Visual Computing and Beyond[1]State of the art on neural rendering[2]NeRF Explosion 2020awesome-NeRF主要参考文献:https://zhuanlan.zhihu.com/p/512538748GIRAFFE[12]再次凭借隐式表示中的物体编辑和组合获得CVPR2021年的best paper 。1 背景3D场景表征可分别为:显式 (explic原创 2022-05-24 11:56:47 · 9908 阅读 · 6 评论 -
【运行测试】train_encoder vs train_encoder with use_image_loss
比较是否使用 image loss对编码器效果的影响。使用generator_encoder来进行测试对比的encoder为:1: /home/joselyn/workspace/0419-course/logs/StyleNeRF-main/train_encoder_1GPU/checkpoints/network-snapshot-000900.pkl2: /home/joselyn/workspace/0419-course/logs/StyleNeRF-main/train_encoder原创 2022-05-23 21:09:21 · 238 阅读 · 0 评论 -
【编码实现】train_mynet.py
Mynet实现运行命令:--g_ckpt=/home/joselyn/workspace/0419-course/stylenerf_pkl/ffhq_256.pkl --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/train_mynet/debug --data=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/dataset_create/Mydataset原创 2022-05-23 10:01:13 · 219 阅读 · 0 评论 -
【编码实现】dataset_create.py
基于generate.py实现。运行命令:python dataset_create.py --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/dataset_create/s5 --trunc=1 --seeds=5 --network=/home/joselyn/workspace/0419-course/stylenerf_pkl/ffhq_256.pkl --render-program="rotation_camera原创 2022-05-23 10:00:49 · 388 阅读 · 0 评论 -
【编码实现】结合encoder和projector对w进行优化(projector_encoder.py)
文章目录说明一下generator_encoder.py说明一下projector.pybaseline file = projector.py说明一下generator_encoder.py给定数据集,和seed,用预训练好的encoder提取w, 然后生成图像。运行命令如下: python generate_encoder.py --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/generate_encoder_r原创 2022-05-18 10:50:41 · 360 阅读 · 0 评论 -
【论文解析】Pixel-aligned Volumetric Avatars
文章目录原创 2022-05-16 10:32:55 · 447 阅读 · 0 评论 -
【源码解析】StyleNeRF 之Train_encoder.py
文章目录思考debug 参数 train_encoder.py --g_ckpt=/home/joselyn/workspace/0419-course/stylenerf_pkl/ffhq_256.pkl --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main1/debug --data=/home/joselyn/workspace/0419-course/images256x256train_encoder.py line原创 2022-05-12 21:41:39 · 310 阅读 · 0 评论 -
【源码解析】StyleNeRF之 projector.py
文章目录正式测试debug了解projector文件说明:Project given image to the latent space of pretrained network pickle即将给定图像投影到预训练网络 的潜在空间options@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)@click.option('--target', 'target_fname原创 2022-05-12 11:06:59 · 913 阅读 · 2 评论 -
【运行测试】使用encoder来generate图像
尝试利用generate.py 和训练好的encoder,来恢复图像创建generate_encoder.py来做代码调整文章目录本地conda环境运行的命令project_name=StyleNeRF-main1workdir=/host/home/joselyn/workspace/0419-courseoutdir=$workdir/logs/$project_namenetwork=$workdir/stylenerf_pkl/ffhq_256.pkltestIma_dir=$w原创 2022-05-11 16:46:25 · 756 阅读 · 0 评论 -
【Docker镜像配置】python3.7+StyleNeRF-Requrements
文章目录在服务器拉取的镜像基础上配置新的环境从服务器上拉取镜像:在服务器拉取的镜像基础上安装python3.7给python3.7 加上pip尝试直接从docker python3.7的镜像出发开始配置基于服务器上的镜像再次安装python3.7在服务器拉取的镜像基础上配置新的环境从服务器上拉取镜像:docker pull 172.20.208.7/hpcl_images/standard:python_3.6-pytorch_1.4.0-gpu创建容器:docker run --name st原创 2022-05-11 08:21:56 · 1517 阅读 · 0 评论 -
【论文解析】StyleNeRF内容回顾+附录解读
StyleNeRF内容回顾+附录解读StyleNeRF内容回顾附录解读ETHICS STATEMENTStyleNeRF内容回顾框架结合了NeRF和StyleGAN。仅使用volume rendering 来产生低分辨率的特征映射,再在此基础上通过上采样回复高分辨率。效果: StyleNerf可以快速和合成高分辨率图像,并且保留3D一致性,可以控制相机poses 和不同层级的风格。它还支持具有挑战性的任务,包括放大和缩小、样式混合、反转和语义编辑。附录解读ETHICS STATEMENT原创 2022-05-04 16:57:34 · 3138 阅读 · 0 评论 -
【论文解析】FiG-NeRF: Figure-Ground Neural Radiance Fields for 3D Object Category
FiG-NeRF: Figure-Ground Neural Radiance Fields for 3D Object Category内容速览方法Setup2 Preliminaries3 目标和背景分割4 Objects as Deformed Template NeRFs5 损失函数结果内容速览我们研究了使用神经辐射场(NeRF)从输入图像集合中学习高质量的3D对象类别模型。我们可以同时将前景对象从不同的背景中分离出来。FiG-NeRF一个2组分NeRF模型。将场景解释为一个几何.原创 2022-04-27 21:58:08 · 1056 阅读 · 0 评论 -
【论文解析】RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse Inputs
文章目录内容速览具体方法1 背景2. Patch-based Regularization3. Sample Space Annealing结果内容速览问题: 当可用视角图像数量减少的时候,NeRF效果不好。发现: 在稀疏输入场景中,大多数artifats是由估计场景几何形状中的错误和训练开始时的发散行为造成的。RegNeRF一种正则化稀疏输入场景的NeRF模型的新方法。正则化从未观察到的视点渲染的patches的几何形状和外观,并在训练期间处理射线采样空间(annealing the .原创 2022-04-27 16:41:56 · 3223 阅读 · 2 评论 -
【论文解析】FENeRF: Face Editing in Neural Radiance Fields
文章目录内容速览具体方法1. 局部可编辑的NeRF生成器2. 判别器3 训练内容速览人像生成方法2D GANs:生成高保真度的人像,但图像一致性较低。3D-aware GANs:可以保持视图的一致性,但它们生成的图像不能本地编辑。FENeRF:一个3d感知的生成器,可以产生一致的视图和本地编辑的肖像图像。我们的方法使用两个解耦的latent codes (可以理解为无关)在一个空间对齐的具有共享几何的三维体中生成相应的面部语义和纹理FENeRF可以联合渲染边界对齐图像和语义掩码(se原创 2022-04-27 11:18:11 · 1853 阅读 · 0 评论 -
【源码解析】StyleNeRF
地址:https://github.com/facebookresearch/StyleNeRFReadme训练新的模型python run_train.py outdir=${OUTDIR} data=${DATASET} spec=paper512 model=stylenerf_ffhq使用预训练模型渲染python generate.py --outdir=${OUTDIR} --trunc=0.7 --seeds=${SEEDS} --network=${CHECKPOINT_原创 2022-04-23 16:21:25 · 1833 阅读 · 9 评论 -
S TYLE N E RF: A S TYLE - BASED 3D-A WARE G ENERA - TOR FOR H IGH - RESOLUTION I MAGE S YNTHESIS
文章目录AbstractMethod3.1 IMAGE SYNTHESIS AS NEURAL IMPLICIT FIELD RENDERING基于风格生成的 NeRFVolume RenderingChallenges3.2 高分辨率图像生成的近似值3.3 PRESERVING 3D CONSISTENCY**Unsampler design****NeRF path regularization**Remove view direction conditionFix 2D noise injecti.原创 2022-04-21 11:15:09 · 2970 阅读 · 1 评论 -
【NeRF】IBRNet论文内容回顾
文章目录摘要回顾框架流程具体实现原文回顾Method 细节1 视角的选择和特征的提取2 用IBRNet 预测颜色和体密度。3 渲染和训练实现细节效果分析摘要回顾框架流程(1)选取目标视角最近的N个源视角图像作为工作集如何判定视角之间的远近?只选择一部分数据集作为工作集,算是操作少样本的角度在发展。感觉这个设定只适用于特定视角的渲染, 那如何生成360°的场景呢,难道每个视角还需要重新选择工作集重新训练吗?(2)从源视觉图像中提取潜在的2D特征(3)对多视图的2D特征进行聚合,得到密度特原创 2022-04-08 11:32:43 · 2376 阅读 · 0 评论 -
【NeRF】论文与代码综合分析及疑问解答
精读了文章《Representing Scenes as Neural Radiance Fields for View Synthesis》, 又看了一遍yen版源码,现在来再回顾一遍论文,尝试回答一些问题。文章目录论文内容回顾摘要IntroductionNeRF实现细节实验结果问题与分析1. 如何生成一个随机的测试视角,其对应的poses 应该如何计算?2. positional encoding在代码中何处,如何实现?4. 为什么密度只与坐标有关而和视角方向无关,可以促进多视图一致性呢?5. 代码中原创 2022-04-07 11:48:09 · 5293 阅读 · 6 评论 -
【NeRF】深度解读yenchenlin/nerf-pytorch项目
前面我们已经成功地在yen项目上运行的我们自己的数据集。但是效果比较差, 分析原因可能有以下两点。1、 用于训练的数据集分辨率过低2、超参数使用不巧当Learning Object-Compositional Neural Radiance Field for Editable Scene Rendering论文中记录的效果我们自己运行出来的效果。文章目录目标变量探索Render_posesload_llff_data()的参数recenter?目标通过阅读yen源码,尝试回答以下问.原创 2022-04-02 18:48:36 · 13650 阅读 · 34 评论 -
【NeRF】在yenchenlin/nerf-pytorch上运行新的数据集
现在有的东西数据集:和yen给出测试数据集进行对比圈出来的文件是有的,不确定其他没有的文件影不影响运行先试一下再说。在yen上运行自己的数据集yen 是这么说的也就是说,yen为每个数据集都准备了对应的config文件。fern的config文件内容如下:expname = fern_testbasedir = ./logsdatadir = ./data/nerf_llff_data/ferndataset_type = llfffactor = 8llffhold =原创 2022-03-31 08:08:47 · 7968 阅读 · 16 评论 -
Nerf项目LLFF 解决新场景pose生成的问题
文章目录LLFF项目了解尝试利用llff为自己的数据集生成pose。MIP是什么?几个重要的链接地址github-llff : https://github.com/fyusion/llffgithub-yen: https://github.com/yenchenlin/nerf-pytorchgithub-2020eccv: https://github.com/bmild/nerfLLFF项目了解这是一个利用预训练好的 模型,来进行render的demo。bash download_原创 2022-03-29 17:21:52 · 8431 阅读 · 3 评论 -
Nerf源码解析——Pytroch3D版
文章目录项目目录train_nerf.pynerf/datasets.pyget_nerf_datasets()nerf/nerf_render.py__init__()构造函数precache_rays()_process_ray_chunk()forward()参看文献项目目录train_nerf.py构建模型 # Initialize the Radiance Field model. model = RadianceFieldRenderer( image_si原创 2022-03-22 16:37:28 · 8650 阅读 · 0 评论 -
NeRF入门知识汇总
NeRF 在2020年ECCV上名声大噪,作为best paper展示(https://www.matthewtancik.com/nerf)原创 2022-03-04 09:41:45 · 9421 阅读 · 5 评论