人工智能
文章平均质量分 67
_Summer tree
这个作者很懒,什么都没留下…
展开
-
图像生成 FID 分数计算 python 实现
FID(Frechet Inception Distance)分数是一种用于衡量生成模型与真实数据集之间相似性的指标,它是通过计算生成的样本与真实样本在Inception网络中特征表示上的差异程度来计算得出的。FID分数越低,表示生成的样本与真实样本之间的差异越小,生成模型的性能越好。原创 2023-06-02 10:40:17 · 4407 阅读 · 2 评论 -
图像相似性评估:SSIM、PSNR,MES, python代码实现
SSIM : 值越接近1,说明图像越相似PSNR:PSNR越大说明失真越少,生成图像的质量越好MES:MSE值越小,说明图像越相似 需要注意的是,这些相似性评估指标的计算,要求图像具有相同的shape。原创 2023-05-31 18:09:33 · 1806 阅读 · 0 评论 -
CLIP score:Text-image similarity 以及image-image similarity 评估代码实现
利用CLIP 计算 Text-to-Image task中 生成的图像与对应的prompt的相似程度,该指标越大越好。对应的输出分数是分别对应了test.jpg和的相似程度。值得注意的是,预训练模型需要提前下载好,并放在项目目录下。(可能需要逐个文件下载)原创 2023-05-31 17:11:27 · 7211 阅读 · 6 评论 -
A Style-Based Generator Architecture for Generative Adversarial Networks
文章目录Abstract1. Introduction2. Style-based generator2.1 Quality of generated images3. Properties of the style-based generator3.1. Style mixing3.2. Stochastic variationAbstractWe propose an alternative generator architecture for generative adversarial n..原创 2022-01-04 16:35:28 · 856 阅读 · 0 评论 -
Explained: A Style-Based Generator Architecture for GANs (StyleGAN)
文章目录BackgroundHow StyleGAN worksMapping Network生成图像最大的调整是对输出的控制。one of their main challenges is controlling their output, i.e. changing specific features such pose, face shape and hair style in an image of a face.A Style-Based Generator Architecture f原创 2022-01-04 10:50:12 · 642 阅读 · 0 评论 -
课程学习(Curriculum Learning, CL)
文章目录问题定义有效性分析1. 模型优化角度数据分布角度方法总结未来研究方向Bengio [1] 首先提出了课程学习(Curriculum learning,CL)的概念,它是一种训练策略,模仿人类的学习过程,主张让模型先从容易的样本开始学习,并逐渐进阶到复杂的样本和知识。问题定义有效性分析1. 模型优化角度CL可以.原创 2022-01-01 18:30:20 · 6128 阅读 · 0 评论 -
《迁移学习》chap01 绪论
文章目录内容框架Chap 01 绪论1.1 迁移学习1. 2 迁移学习的定义1.3 与已有机器学习范式的关系1.4 迁移学习的基础研究问题1.5 迁移学习应用内容框架Chap 01 绪论1.1 迁移学习我们无法获得各个领域的大量训练数据的原因应用场景数据量小机器学习模型需要强鲁棒性。个性化和定制问题用户隐私和数据安全迁移学习已经在以下不同术语下得到了广泛的研究:知识重用基于案例的推理类比学习领域自适应预训练和微调1. 2 迁移学习的定义在分类问题中,标签时离散值,表原创 2021-04-09 17:37:01 · 470 阅读 · 1 评论 -
最新小样本学习综述 A Survey on Few-Shot Learning | 四大模型Multitask Learning、Embedding Learning、External Memory…
文章目录01 Multitask Learning01.1 Parameter Sharing01.2 Parameter Tying.02 Embedding Learning相关阅读:A Survey on Few-Shot Learning | Introduction and OverviewA Survey of Few-Shot Learing | Data给定少数样本的Dt...原创 2020-05-11 10:56:59 · 2578 阅读 · 1 评论 -
Generalizing from a Few Examples: A Survey on Few-Shot Learning 小样本学习最新综述 | 三大数据增强方法
文章目录01 Transforming Samples from Dtrain02 Transforming Samples from a Weakly Labeled or Unlabeled Data Set03 Transforming Samples from Similar Data SetsDiscussion and Summary上一篇:A Survey on Few-Shot ...原创 2020-04-29 15:53:18 · 3168 阅读 · 0 评论 -
Generalizing from a Few Examples: A Survey on Few-Shot Learning 小样本学习最新综述| Introduction and Overview
Author listYAQING WANG, Hong Kong University of Science and Technology and Baidu ResearchQUANMING YAO∗, 4Paradigm Inc.JAMES T. KWOK, Hong Kong University of Science and TechnologyLIONEL M. NI, Ho...原创 2020-04-13 22:21:16 · 2358 阅读 · 0 评论 -
Graph Neural Networks图神经网络(一)
Author: Nihai V. Nayak (March 2020)Graph Neural Networks图神经网络01 Introduction02 Basics03 Learning on Graphs03.1 Formal Definition04 Graph Convolutional Networks (GCN)04.1 Aggregate04.2 Combine05 Gr...原创 2020-04-12 22:32:36 · 2820 阅读 · 0 评论 -
Capsule Networks胶囊网络(二)
文章目录Dynamic RoutingCoefficients operate on capsule levelDynamic Routing: Routing by AgreementComparison to fully connected neural networkfront-up contentComputing input/output vectors of a capsuleRout...原创 2020-04-12 21:13:06 · 740 阅读 · 0 评论 -
Capsule Networks胶囊网络(一)
author: Sargur Srihari srihari@buffalo.eduThis is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/CSE676文章目录Limitations of Convolutional NetworksConvolutionalNeuralN...原创 2020-04-10 23:01:18 · 1234 阅读 · 0 评论 -
AI(二):有信息(启发式)的搜索策略
有信息(启发式)的搜索策略文章目录有信息(启发式)的搜索策略1 贪婪最佳优先搜索Bucharest问题性能分析完备性最优性时间和空间复杂度2 A*搜索:缩小总评估代价A*算法的最优性6 启发式函数松弛问题子问题性能评估:完备性最有效复杂性盲目搜索:(上节课讲的都是盲目搜索)缺点:不知道哪个节点离目标最近。需要一个启发式函数来评估远近。启发式函数:h(n)h(n)h(n)=...原创 2019-03-27 10:17:32 · 2073 阅读 · 0 评论 -
AI(三):超越经典搜索
超越经典搜索文章目录超越经典搜索1 局部搜索算法和最优化问题1.1 爬山法困境随机爬山法首选爬山法随机重启爬山法1.2 模拟退火搜索1.3 局部束搜索1.4 遗传算法2 连续空间中的局部搜索3 使用不确定动作的搜索3.1 不稳定的吸尘器世界3.2 与或搜索树4 使用部分可观察信息的搜索4.1 无观察信息的 搜索4.2 有观察信息的搜索5 联机搜索Agent 和未知环境5.1 联机搜索问题5.3 ...原创 2019-04-02 22:58:03 · 713 阅读 · 0 评论 -
AI(四):对抗搜索
对抗搜索文章目录对抗搜索1 博弈multi-agent 环境形式化搜索问题2 博弈中的优化决策2.1 极小极大算法2.2 多人博弈时的最优策略3 $\alpha-\beta$ 剪枝3.1 行棋排序4 不完美的实时决策4.1 评估函数4.2 截断搜索4.3 向前剪枝1 博弈假设:有两个选手完全可观察,确定性的环境zero-sum(零和游戏)时间受限multi-agent 环境合...原创 2019-04-09 23:01:45 · 787 阅读 · 0 评论 -
AI(五):约束满足问题
约束满足问题1 定义约束满足问题1.1 实例:地图着色问题1.3 CSP的形式化2 约束传播:CSP中的推理2.1 结点相容2.2 弧相容2.3 路径相容2.4 k-相容3 CSP 的回溯搜索3.1 变量和取值顺序3.2 搜索与推挤交错进行5 问题的结构6 本章小结使用成分表示来描述状态: 一组便令,每个变量有自己的值。当每个变量都有自己的赋值同时满足所有关于变量的约束时,问题就得到了解决,这种...原创 2019-04-16 22:12:14 · 4334 阅读 · 0 评论 -
AI | 逻辑Agent
逻辑Agent1 基于知识的Agent逻辑是作为支持基于知识的Agent 的一类通用表示。1 基于知识的Agent基于知识的Agent 的核心部件是其知识库,称为KB。知识库是一个语句集合,这些语句有知识表示语言表达。当语句是直接给定而不是推导出来得到的时候,我们将其称为公理。将新语句添加到知识库以及查询目前所知内容的方法:TELL(告诉)ASK (询问) //不能说假话这两...原创 2019-04-23 21:46:28 · 501 阅读 · 0 评论 -
为什么-关于因果关系的新科学 | 导言
[美]朱迪亚·珀尔[美]达纳·麦肯齐 著推荐序以平实的话语介绍了因果推断的理论建构对渴望了解因果推断的人们来说,它既是因果关系科学的入门书,又是关于这门学问从萌发到蓬勃发展的一部简史,其中不乏对当前的人工智能发展现状的反思和对未来人工智能发展方向的探索。the book of whythe book of change这样一本重量级的科普读物,即便是对于一位专门从事人工智能或机器学...原创 2019-09-06 16:03:28 · 2584 阅读 · 0 评论 -
为什么-关于因果关系的新科学 | 01 因果关系之梯
文章目录因果关系的三个层级迷你图灵测试论概率与因果关系上帝问的是“什么”,他们回答的却是“为什么”。上帝询问事实,他们回答理由。而且,两人都深信,列举原因可以以某种方式美化他们的行为。他们是从哪里得到这样的想法的?人类祖先想象不存在之物的能力是一切的关键,正是这种能力让他们得以交流得更加顺畅。在获得这种能力之前,他们只相信自己的直系亲属或者本部落的人。而此后,信任就因共同的幻想(例如信仰无...原创 2019-09-08 21:14:28 · 4788 阅读 · 0 评论 -
AI(一):智能Agent
Agent文章目录Agent1 Agent 和环境2 好的行为:理想的概念2.1 理性2.2 全知者、学习和自主性3 环境的性质3.1 任务环境的规范描述3.2 任务环境的性质4 Agent的结构4.1 Agent 程序4.2 简单反射Agent理性Agent 的概念是我们的人工智能方法的核心。1 Agent 和环境我们用感知来表示任何给定时刻Agent的感知输入。Agent 的感知序...原创 2019-03-25 17:21:05 · 2372 阅读 · 0 评论