论文解析
文章平均质量分 93
_Summer tree
这个作者很懒,什么都没留下…
展开
-
Magic3D: High-Resolution Text-to-3D Content Creation(高分辨率文本到3d内容创建)
在第一阶段,我们使用eDiff-I[2]中描述的基础扩散模型,它类似于DreamFusion中使用的Imagen[38]的基础扩散模型。具体来说,我们使用来自即时NGP[27]的基于密度的体素修剪方法,以及基于八叉树的射线采样和渲染算法[46]。我们的方法被称为Magic3D,可以在40分钟内创建高质量的3D网格模型,这比DreamFusion快2倍(据报道平均需要1.5小时),同时也实现了更高的分辨率。Magic3D是一个两阶段的从粗到精的框架,使用高效的场景模型,实现高分辨率的文本到3d合成(图2)。原创 2023-07-13 08:58:19 · 1394 阅读 · 1 评论 -
Vox-E: Text-guided Voxel Editing of 3D Objects(3D目标的文本引导体素编辑)
最后,我们继承了体积表示的局限性。请注意,与最近的神经 3D 场景表示(包括 ReLU Fields)相比,我们没有对视图相关的外观效应进行建模,因为我们发现当以 2D 基于扩散的模型引导时,它会导致不希望的伪影。在上一节中描述的初始体素网格 Gi的基础上,我们通过优化 Ge 来执行文本引导的对象编辑,Ge 是一个网格,表示从 Gi 初始化的编辑对象。我们引入了一种新的体积正则化损失,直接在3D空间中操作,利用我们的3D表示的显式性质来加强原始和编辑对象的全局结构之间的相关性。原创 2023-07-01 09:27:31 · 797 阅读 · 0 评论 -
[PMLR 2021] Zero-Shot Text-to-Image Generation:零样本文本到图像生成
Fig 1. 原始图像(上)和离散VAE重建图像(下)的比较。编码器对空间分辨率进行8倍的下采样。虽然细节(例如,猫毛的纹理、店面上的文字和插图中的细线)有时会丢失或扭曲,但图像的主要特征通常仍然是可识别的。我们使用8192的大词汇量来减轻信息的丢失。原创 2023-06-29 08:38:02 · 1596 阅读 · 0 评论 -
Tune-A-Video:用于文本到视频生成的图像扩散模型的One-shot Tuning
我们的方法可以很容易地与个性化的T2I模型集成(例如,DreamBooth[39],它以3-5张图像作为输入,并返回一个个性化的T2I模型),直接对它们进行细化。我们的方法还可以与T2I适配器[29]和ControlNet[52]等条件T2I模型集成,在不需要额外训练成本的情况下对生成的视频进行不同的控制。大量的实验证明了我们的方法在广泛的应用中取得了显著的效果。相比之下,我们的方法生成了时间连贯的视频,保留了输入视频中的结构信息,并与编辑过的单词和细节保持一致。每个设计都是单独的,以分析其影响。原创 2023-06-28 08:37:56 · 1909 阅读 · 0 评论 -
Text2Video-Zero:Text-to-Image扩散模型是Zero-Shot视频生成器
此外,我们的方法更忠实于输入细节,例如,Video instruction-pix2pix完全按照提供的姿势绘制舞者(图9左),并显示输入视频中出现的所有滑雪人员(对比图9最后一帧(右)),与Tune-A-Video相比。我们对该领域的贡献包括提出了zero-shot文本到视频合成的新问题,展示了文本到图像扩散模型用于生成时间一致视频的使用,并提供了我们的方法在各种视频合成应用中的有效性的证据。我们证明了我们的方法在各种应用中的有效性,包括条件和专业视频生成,以及视频指导-pix2pix,即指导视频编辑。原创 2023-06-27 16:27:02 · 1864 阅读 · 0 评论 -
[CVPR 2023] Imagic:使用扩散模型进行基于文本的真实图像编辑
当任务是复杂的非刚性编辑时,如让狗坐,我们的方法明显优于以前的技术。相比之下,微调从输入图像中施加的细节不仅仅是优化的嵌入,允许我们的方案在η的中间值中保留这些细节,从而实现语义上有意义的线性插值。与其他编辑方法相反,我们的方法可以产生复杂的非刚性编辑,可以根据要求改变图像内对象的姿势,几何形状和/或组成,以及更简单的编辑,如风格或颜色。我们使用两种不同的最先进的文本到图像生成扩散模型来证明我们的框架是通用的,可以与不同的生成模型相结合:Imagen[53]和Stable diffusion[50]。原创 2023-06-25 22:17:16 · 2144 阅读 · 1 评论 -
[论文解析] Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation
In this paper, we formulate and identify the sources of the Janus problem in zero-shot text-to-3D generation. In this light, we argue that debiasing the prompts and raw 2D scores is essential for the realistic generation. Therefore, we propose two methods原创 2023-04-06 10:36:48 · 658 阅读 · 1 评论 -
[论文解析] Anti-DreamBooth: Protecting users from personalized text-to-image synthesis
This paper reveals a potential threat of misused DreamBooth models and proposes a framework to counter the threat. Our solution is to perturb users' images with subtle adversarial noise so that any DreamBooth model trained on those images will produce poor原创 2023-04-05 18:31:30 · 552 阅读 · 0 评论 -
[论文解析] DreamBooth3D: Subject-Driven Text-to-3D Generation
In this paper, we have proposed DreamBooth3D , a method for subject-driven text-to-3D generation. Given a few (3-6) casual image captures of a subject (without any additional information such as camera pose), we generate subject-specific 3D assets that als原创 2023-04-04 11:30:00 · 1258 阅读 · 0 评论 -
Tip-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling
AbstractIn this paper, we propose Training-Free CLIP-Adapter (Tip-Adapter), which not only inherits CLIP s training-free advantage but also performs comparably or even better than CLIP-Adapter. Tip-Adapter does not require any back propagation for train..原创 2022-02-22 09:18:39 · 470 阅读 · 1 评论 -
【arVix 2021】Masked Autoencoders Are Scalable Vision Learners(MAE)
文章目录摘要引言方法maskingMAE encoderMAE decoderReconstruction target.Simple implementation.总结广泛的影响摘要本文证明了遮罩自动编码器(MAE)是一种可扩展的计算机视觉自监督学习器。我们的MAE方法很简单:我们掩盖输入图像的随机补丁,并重建缺失的像素。它基于两个核心设计。首先,我们开发了一个非对称的编码器-解码器体系结构,其中的编码器只对可见的补丁子集(没有掩码标记)进行操作,同时还有一个轻量级解码器,可以从潜在表示和掩码标记重.原创 2022-01-26 12:04:22 · 3392 阅读 · 0 评论 -
【CVPR 2019】Semantic Image Synthesis with Spatially-Adaptive Normalization(SPADE)
文章目录Introduction3. Semantic Image SynthesisSpatially-adaptive denormalization.conclusion# 空间自适应正则化 We propose spatially-adaptive normalization, a simplebut effective layer for synthesizing photorealistic images given an input semantic layout. we原创 2022-01-25 17:11:40 · 2479 阅读 · 0 评论 -
【Journal of Computer-Aided Design & Computer Graphics】基于生成对抗网络的行人重识别方法研究综述
文章目录引言数据集介绍基于GAN的行人重识别方法分类2.1基于风格转换的方法2.2基于数据增强的方法2.3基于不变性特征学习的方法3 基于GAN的方法性能对比分析总结引言对于行人检测, 已有多种精度较高的算法, 如**YOLO[5], SSD[6]和Fast R-CNN[7]**等, 均可获得高质量的检测结果.行人重识别在真实场景中仍然面临诸多挑战:深度学习的方法依赖大量的训练数据, 目前公开的数据集标注的行人数据规模有限, 并且不同的行人重识别数据集之间存在域差, 即在不同数据集上分别训.原创 2022-01-24 21:36:28 · 3815 阅读 · 3 评论 -
GAN Inversion: A Survey
文章目录Abstract框架IntroductionEvaluation MetricsAbstractGAN inversion aims to invert a given image back into the latent space of a pretrained GAN model so that the image can befaithfully reconstructed from the inverted code by the generator.In this paper, w原创 2022-01-20 15:39:26 · 1804 阅读 · 0 评论 -
【CVPR 2021】DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort
DatasetGAN:一种自动生成大量高质量的语义分割图像数据集的过程,需要最少的人力。 仅需要少量标注的样本来训练decoder生成潜在空间剩下的部分, 从而产生一个无限的注释数据生成器。 生成的数据集接下来可以被用来训练任何计算机视觉架构。标注成本是实现数据规模的瓶颈。我们的目标是合成大型高质量的标签数据集,只需要标签少数的例子。在我们的工作中,我们展示了最新的最先进的图像生成模型学习非常强大的潜在表示,可以用于复杂的像素级任务。我们引入了DatasetGAN,原创 2022-01-19 11:05:29 · 2791 阅读 · 0 评论 -
Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-ID
方法概述学习通过基于记忆的多源元学习来生成未知领域的行人重识别。1, 文章提出了一种多源域元学习框架,可以模仿域生成(DG)的训练-测试过程。 该方法增强了模型学习域无关表示并增强了泛化能力。2, 文章在框架中配备了memory-based 模块,以非参数方式现实了身份损失,可以防止由传统参数方式导致的不稳定的优化。3, 提出了MetaBN来生成各种元测试特征,这些特征可以直接注入到我们的元学习框架中,并得到进一步的改进。文章目录方法概述内容概要工作概述成果概述方法详解方法框架算法描述具体实现.原创 2021-11-08 21:38:52 · 700 阅读 · 0 评论 -
CVPR:Refining Pseudo Labels with Clustering Consensus over Generations for Unsupervised Object Re-ID
方法概述基于世代聚类共识的伪标签改进无监督目标重识别。1,文章引入了使用时序嵌入来正则化无监督目标重识别中的噪音伪标签。2, 文章提出了一种伪标签改进策略: 在训练的迭代过程中使用聚类共识改进伪标签。文章目录方法概述内容概要工作概述成果概述方法详解方法框架具体实现实验结果总体评价引用格式内容概要论文名称简称会议/期刊出版年份baselinebackbone数据集Refining Pseudo Labels With Clustering Consensus Ove.原创 2021-11-08 11:55:40 · 1323 阅读 · 0 评论 -
Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-ID
方法概述文章目录方法概述内容概要工作概述成果概述方法详解方法框架算法描述具体实现实验结果总体评价引用格式参考文献内容概要论文名称简称会议/期刊出版年份baselinebackbone数据集row 1 col 1row 1 col 2在线链接:源码链接:工作概述成果概述方法详解方法框架算法描述具体实现实验结果总体评价引用格式参考文献...原创 2021-11-02 12:00:58 · 493 阅读 · 0 评论 -
【AAAI 2021】Few-Shot One-Class Classification via Meta-Learning 【FSOCC via Meta-learning】
背景知识One-class classificationlearning a binary classifier with data from only one class //从一个类中学习一个二分类器。 【想法】可以用来做异常检测。The anomaly detection (AD) task(Chandola, Banerjee, and Kumar 2009; Aggarwal 2015) consists in differentiating between normal and.原创 2021-10-29 11:26:40 · 840 阅读 · 1 评论 -
【CVPR 2021】Intra-Inter Camera Similarity for Unsupervised Person Re-Identification (IICS++)
方法概述文章目录方法概述内容概要工作概述成果概述方法详解方法框架算法描述具体实现实验结果总体评价引用格式参考文献内容概要论文名称简称会议/期刊出版年份baselinebackbone数据集row 1 col 1row 1 col 2在线链接:源码链接:工作概述成果概述方法详解方法框架算法描述具体实现实验结果总体评价引用格式参考文献...原创 2021-10-28 21:50:01 · 819 阅读 · 0 评论 -
【CVPR 2021】Unsupervised Multi-Source Domain Adaptation for Person Re-Identification (UMSDA)
方法概述1,文章将多源概念引入到了无监督域适应行人重识别当中。2,文章提出了一种修订域特定批归一化模块(RDSBN), 可以同时减少域特定信息和增加人物特征的可区别性。3,我们基于多域信息融合(MDIF)开发了图神经网络(GCN),以此来拉近特征空间中的多域。文章目录方法概述内容概要工作概述成果概述方法详解方法框架具体实现实验结果总体评价引用格式参考文献内容概要论文名称简称会议/期刊出版年份baselinebackbone数据集Unsupervised Multi.原创 2021-10-21 11:19:02 · 2256 阅读 · 0 评论 -
【CVPR 2021】 Lifelong Person Re-Identification via Adaptive Knowledge Accumulation
方法概述1,文章提出了一种终身学习的person re-ID方法,该方法可以持续不断地跨多域学习。2, 文章提出了用于上述终身学习方法的AKA框架,该框架包含一个可学习的知识图用于更新之前的知识, 同时,该框架转移知识来提高看不见领域上的泛化性。3, 文章为LReID提供了一个基线和评估策略。文章目录方法概述内容概要工作概述成果概述方法详解方法框架具体实现实验结果总体评价引用格式参考文献内容概要论文名称简称会议/期刊出版年份baselinebackbone数据集L.原创 2021-10-20 20:49:07 · 1011 阅读 · 0 评论 -
【CVPR 2021】Unsupervised Pre-training for Person Re-identification(UPT)
方法概述1,文章构建了一个大规划的无标注行人重识别数据集LUPerson。2,文章仔细研究无监督预训练模型的关键因素。文章目录方法概述内容概要工作概述成果概述方法详解方法框架具体实现实验结果总体评价引用格式参考文献内容概要论文名称简称会议/期刊出版年份baselinebackbone数据集Unsupervised Pre-training for Person Re-identification-CVPR2021-LUPerson、market501、du.原创 2021-10-20 14:28:01 · 1930 阅读 · 0 评论 -
【CVPR 2021】Joint Generative and Contrastive Learning for Unsupervised Person Re-identification
方法概述1,提出了一种用于无监督行人重识别的联合生成对比学习框架,生成和对比模块互相提高对方的性能。2, 在生成模块中,我们引入了3D网格生成器。3, 在对比模块,我们提出了一种视角无关的损失,来减少生成样本和原始样本之间的类内变化。文章目录方法概述内容概要工作概述成果概述方法详解方法框架具体实现实验结果总体评价引用格式参考文献内容概要论文名称简称会议/期刊出版年份baselinebackbone数据集Joint Generative and Contrastiv.原创 2021-10-19 21:19:44 · 1285 阅读 · 0 评论 -
【Sensors 2021】Relation-Based Deep Attention Network with Hybrid Memory for One-Shot Person Re-Id
方法概述1,提出了带有混合内存的基于关系的注意力网络,该网络可以充分利用全局信息关注身份特征,用于基于关系的注意网络的模型训练。2,提出可以训练one-shot 和无标注数据的混合内存的统一框架,这对性能有显著的贡献。文章目录方法概述内容概要工作概述成果概述方法详解方法框架算法描述具体实现实验结果总体评价引用格式参考文献内容概要论文名称简称会议/期刊出版年份baselinebackbone数据集Relation-Based Deep Attention Networ.原创 2021-10-12 13:01:09 · 585 阅读 · 0 评论 -
【arXiv 2021】Cluster Contrast for Unsupervised Person Re-Identification(CCU)
方法概述1,提出 cluster contrast(聚类对比)来存储特征向量和计算对比损失。2,展示了 通过聚类级别的内存字典,可以解决聚类特征表达不一致的问题。文章目录方法概述内容概要工作概述成果概述方法详解方法框架算法描述具体实现实验结果总体评价引用格式参考文献内容概要论文名称简称会议/期刊出版年份baselinebackbone数据集Cluster Contrast for Unsupervised Person Re-IdentificationCCUa.原创 2021-10-11 15:55:49 · 1693 阅读 · 0 评论 -
【NIPS 2020】Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID
#方法概述文章目录内容概要工作概述成果概述方法详解方法框架算法描述具体实现实验结果总体评价引用格式参考文献内容概要论文名称简称会议/期刊出版年份baselinebackbone数据集row 1 col 1row 1 col 2在线链接:源码链接:工作概述成果概述方法详解方法框架算法描述具体实现实验结果总体评价引用格式参考文献...原创 2021-10-09 11:36:14 · 926 阅读 · 0 评论 -
【TIP 2020】Iterative Local-Global Collaboration Learning Towards One-Shot Video Person Re-ID
引言提出了local-global 协作学习方法,用来进行标签估计在损失中引入了变量信息瓶颈作为正则项。使得特征提取器能过滤掉无关因素采用了和eug一样的迭代模式。文章目录引言内容概要工作概述成果概述方法详解方法框架具体实现实验结果![在这里插入图片描述](https://img-blog.csdnimg.cn/dc8aa10f9c094bf587846bf98ce340f7.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJh.原创 2021-08-28 21:31:52 · 3230 阅读 · 0 评论 -
【PR 2021】Progressive sample mining and representation learning for one-shot person re-identification
文章目录内容概要工作概述成果概述方法详解方法特点方法框架算法描述具体实现实验结果总体评价引用格式参考文献内容概要论文名称简称会议/期刊出版年份baselinebackbone数据集Progressive sample mining and representation learning for one-shot person re-identificationPSMAPattern Recognition2021Y. Wu, Y. Lin, X. Dong, Y..原创 2021-08-27 11:14:53 · 492 阅读 · 0 评论 -
【Information Sciences】PMT-Net: Progressive Multi-Task Network for one-shot Person Re-Identification
文章目录原创 2021-08-23 21:23:42 · 996 阅读 · 0 评论 -
【ECCV2020】Generalizing Person Re-ID by Camera-Aware Invariance Learning and Cross-Domain Mixup (CDM)
//利用相机感知的不变学习和跨域混淆泛化行人重识别文章目录1. 背景知识Person re-identification (re-ID)cross-domain re-IDcross-domain re-ID vs UDA2. 内容概要思路2.1 文本工作2.2 方法效果关键词相关工作数据集3. 方法提要方法框架实验结果4. 方法详解参考文献下方↓公众号后台回复“CDM”,即可获得论文电子资源。1. 背景知识Person re-identification (re-ID)Person re..原创 2021-07-02 09:45:06 · 429 阅读 · 0 评论 -
【ECCV 2020】Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive Person Re-ID
JVTC1 背景知识1.1Person Re-Identification (ReID)1.2 supervised person ReIDProblem #2Problem #31.3 unsupervised learning1.4 unsupervised person ReID1.5 Unsupervised domain adaptive person Re-IDentificationProblem #12 内容概要2.1 本文工作2.2 实验效果2.3 相关工作Unsupervised D..原创 2021-06-30 11:50:07 · 899 阅读 · 0 评论 -
【ECCV 2020】UDA with Noise Resistible Mutual-Training for Person Re-identification (NRMT)
NRMT:噪声可抵抗的Mutual-Training1. 背景知识Pseudo-label based self-trainingProblem #12. 内容概要本文工作实验效果相关工作3. 方法提要Noise Resistible Mutual-Training (NRMT) method方法框架4. 方法详解1. 背景知识Pseudo-label based self-trainingPseudo-label based self-training is one of the represe.原创 2021-06-29 11:56:36 · 843 阅读 · 0 评论 -
【ICCV 2019】Self-similarity Grouping: A Simple Unsupervised Cross DA Approach for Person Re-id(SSG)
SSG背景知识内容概要本文工作实验效果方法提要方法详解背景知识内容概要本文工作we explore how to harness the similar natural characteris- tics existing in the samples from the target domain for learning to conduct person re-ID in an unsupervised man- ner. //我们探讨了如何利用目标域样本中存在的相似的自然特征来学习在无监督的.原创 2021-06-29 09:44:03 · 556 阅读 · 0 评论 -
【ECCV 2020】An Attention-Driven Two-Stage Clustering Method for Unsupervised Person Re-ID(ADTC)
ADTC背景知识The progressive clustering methodProblem #1attention kernelProblem #2pose estimation modelProblem #3内容概要本文工作数据集效果描述相关工作方法提要方法框架算法描述实验结果方法详解背景知识The progressive clustering methodThe progressive clustering method and its variants, which iterative.原创 2021-06-26 09:29:54 · 417 阅读 · 0 评论 -
【ECCV2020】Global Distance-Distributions Separation for Unsupervised Person Re-identification (GDS)
GDS背景知识supervised person re- identification (ReID)unsupervised domain adaptationUDA- Pseudo label based approachesUDA-Transfer-based approachesPerson ReID inference/testlocal constraints内容概要本文工作自我评价实验效果数据集相关工作方法提要方法框架实验结果方法详解背景知识supervised person re- id.原创 2021-06-25 09:17:51 · 548 阅读 · 0 评论 -
【ECCV 2020】Deep Credible Metric Learning for Unsupervised Domain Adaptation Person Re-identification
DCML背景知识Person re-identification (ReID)common methods is finetuning内容概要本文工作方法效果数据集相关工作未来工作方法提要主要框架算法描述实验效果方法详解背景知识Person re-identification (ReID)Person re-identification (ReID) aims at identifying a query individual from a large set of candidates unde.原创 2021-06-24 10:29:02 · 446 阅读 · 0 评论 -
【CVPR 2020】Unsupervised Person Re-identification via Softened Similarity Learning(SSL)
文章目录背景知识person re-identification (re-ID)unsupervised domain adaptation (UDA) methodsUnsupervised Person Re-identificationiterative clustering and classification内容概要聚类硬标签的不足本文工作数据集实验效果未来工作相关工作方法提要主要框架实验结果方法详解背景知识person re-identification (re-ID)person re.原创 2021-06-23 09:32:34 · 402 阅读 · 0 评论 -
ICASSP 2020: LOCAL-GLOBAL FEATURE FOR VIDEO-BASED ONE-SHOT PERSON RE-IDENTIFICATION(LGF)
LGF背景知识One-shot video-based re-identificationPerson re-identification (Re-ID)part-based features for Re-ID [10, 11]内容提要本文工作数据集Contributions相关工作方法提要方法框架实验结果方法详解背景知识One-shot video-based re-identificationOne-shot video-based re-identification, which uses.原创 2021-06-22 09:05:42 · 274 阅读 · 0 评论 -
TM 2020: Progressive Bilateral-Context Driven Model for Post-Processing Person Re-ID(PBCDM)
PBCDM 渐进双边环境驱动模型 for Post-Processing Person Re-ID内容提要现有不足/困难核心思想本文工作实验效果源码地址未来工作相关工作相关知识classic content-based image retrieval (CBIR) system内容提要现有不足/困难these content-based methods that determine the pairwise relationship only based on the similarity bet.原创 2021-06-21 09:43:49 · 262 阅读 · 0 评论