偏差-方差权衡(Bias-Variance Tradeoff)

本文探讨了机器学习中的偏差-方差权衡问题。高偏差表示欠拟合,而高方差则意味着过拟合。随着模型复杂度增加,偏差减小但方差增大,可能导致过拟合。通过权衡这两者,可以提高模型的泛化能力。文中还引用了《西瓜书》中的内容,进一步解释了偏差和方差在回归任务中的数学定义及其对期望泛化误差的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习中讨论某模型时,提到偏差-方差权衡。

这里写图片描述

如上图,用直线拟合后,相比原来的点其偏差最大,最后一个图则可完全拟合数据点,其偏差最小。但是拿第一个直线模型去预测未知数据,可能会相比最后一个模型更准确,因为最后一个模型过拟合,即第一个模型的方差比最后一个模型小。

一般而言,高偏差意味着欠拟合,高方差意味着过拟合。两者之间有如下关系:

这里写图片描述

随着模型复杂度增加,模型对于训练集的偏差越小,其方差越大;在训练上表现非常好,但测试集上效果不佳,原因就是过拟合了。我们需要在方差和偏差之间做出一个权衡,如下图所示。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值