dcm2nii.多张dcm 文件转换成nii等其他格式的存储。

在进行医学图像处理的时候往往遇到多张dcm 文件合并成一个文件。或者要使用3D数据进行相关的处理。但是我在网上找了一个往往都是一些软件直接进行了操作。这样对于程序来说不是很友好。最后我自己写了一个基于python的小程序这样可以直接使用了。

    import SimpleITK as sitk
    reader = sitk.ImageSeriesReader()
    dicom_names = reader.GetGDCMSeriesFileNames('H:\\dicomdata\\test1labeldcm')
    reader.SetFileNames(dicom_names)
    image2 = reader.Execute()
    image_array = sitk.GetArrayFromImage(image2) # z, y, x
    origin = image2.GetOrigin() # x, y, z
    spacing = image2.GetSpacing() # x, y, z
    image3=sitk.GetImageFromArray(image3)##其他三维数据修改原本的数据,
    sitk.WriteImage(image3,'test.nii') #这里可以直接换成image2 这样就保存了原来的数据成了nii格式了。

几行简单的python 程序就可以进行转换了。

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值