BZOJ 5101([POI2018]Powód-kruskal+dp)

题意:在地面上有一个水箱,它的俯视图被划分成了n行m列个方格,相邻两个方格之间有一堵厚度可以忽略不计的墙,水箱与外界之间有一堵高度无穷大的墙,因此水不可能漏到外面。已知水箱内每个格子的高度都是[0,H]之间的整数,请统计有多少可能的水位情况。因为答案可能很大,请对10^9+7取模输出。两个情况不同当且仅当存在至少一个方格的水位在两个情况中不同。
Input
第一行包含三个正整数n,m,H(n*m<=500000,1<=H<=10^9)。
接下来n行,每行m-1个整数a[i]j,表示(i,j)和(i,j+1)之间的墙的高度。
接下来n-1行,每行m个整数b[i]j,表示(i,j)和(i+1,j)之间的墙的高度。
Output
输出一行一个整数,即方案数模10^9+7的结果。

对原图以格为点,用墙建边,用kruskal重构树。
ansi 为连通块i的方案。
每次用高度为w的墙合并2个连通块都更新这2个连通块的合并方案数,
要么2边的水位都不超过w(方案数为2个连通块方案数乘积),要么超过w且相同。
ansi=ansxansy+Ww (W为这个连通块水位的上界)

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
                        For(j,m-1) cout<<a[i][j]<<' ';\
                        cout<<a[i][m]<<endl; \
                        } 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
} 
#define MAXN (500000<<2)
int n,m,fa[MAXN];
int getfa(int x) {return (fa[x]==x)?x:(fa[x]=getfa(fa[x]));}
pair<int, pi > e[MAXN];
int id(int i,int j){return (i-1)*m+j;}
ll ans[MAXN],c[MAXN]={};
int main()
{
//  freopen("bzoj5101.in","r",stdin);
//  freopen(".out","w",stdout);
    n=read(),m=read();
    ll H=read();
    int cnt=0;
    For(i,n) {
        For(j,m-1) {
            int p=id(i,j),q=id(i,j+1);
            e[++cnt]=mp(read(),mp(p,q));
        }
    }
    For(i,n-1) {
        For(j,m) {
            int p=id(i,j),q=id(i+1,j);
            e[++cnt]=mp(read(),mp(p,q));
        }
    }
    For(i,n*m)fa[i]=i,ans[i]=1;
    sort(e+1,e+1+cnt);
    int tot=n*m;
    For(i,cnt) {
        int x=e[i].se.fi,y=e[i].se.se,w=e[i].fi;
        x=getfa(x),y=getfa(y);
        if (x^y) {
            ++tot;
            fa[x]=fa[y]=tot; fa[tot]=tot; c[tot]=w;
            ans[x] += w-c[x];  ans[y]+=w-c[y];
            ans[x]%=F; ans[y]%=F;
            ans[tot]=ans[x]*ans[y]%F;
        }
    }
    cout<<(ans[tot]+H-c[tot])%F<<endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值