机器学习(周志华) 习题 参考答案 第十三章

周志华老师的《机器学习》的第13章的习题答案较少,只找到了三篇,分别为链接一链接二,这两篇文章有几乎所有题目的个人解答。第三个人只对部分题目进行了解答,相关链接将放在题目下方。
以下是个人对这章的习题的理解,如有问题,欢迎指正。其中第四题和第五题网上答案较多,不再重复。

13.1推导式(13.5)~(13.8)。

链接三这个答案解答的已经非常好了。

13.2朴素贝叶斯,生成式半监督算法。

链接三
上述链接中的答案,在前面分析的都没有疑问,但是最后求解时,感觉没有体现EM算法的M步,只是迭代求解,没有最大化过程。有点像题13.8中的自训练算法。
我个人的答案为:
在这里插入图片描述

13.3混合专家,生成式半监督算法。

链接三答案写的非常好,非常详细,还分两种情况进行了讨论。

13.6TSVM改进算法。

有两个想法:
一是将图13.6中第6行的任意ξ_i和ξ_j,改为两个类别中值最大的ξ;二是每次迭代取满足要求的几个ξ对,在迭代过程中逐渐减少使用的对数。

13.7新样本分类的图半监督学习方法。

如13.4节最后一段所说,使用额外的预测机制,如SVM,LR等,或者根据属性值考虑使用KNN。

13.8自训练(self-training)的缺陷。

若有错误标记,则误差可能会在传播过程中扩大,使训练集中的错误样本较多,即噪声较多,降低预测的正确率,见《基于半监督学习的朴素贝叶斯分类新算法》中有描述。

13.9将两个视图分离出来。

书中P305说两个视图要充分且条件独立。所以可以考虑从条件独立入手,分离两类属性。
假定数据集中包括完整的属性值和标记值。
首先计算每个属性的条件分布,然后计算每对属性的概率分布的相关系数,根据相关系数将几乎相互独立的属性分到不同的视图中。

13.10违约检测。

链接三给出了一种较为复杂的算法,但是我对他的答案中使用距离判断违约的观点不太认同,所以我还是从集合的角度处理违约,具体如下。
首先处理集合M,将M中有传递性的样本对放入一个集合中。
然后根据流程图实现算法。
在这里插入图片描述

很高兴为您解答这个问题!本次我们将学习如何用 Python 实现《机器学习周志华教授第十四章中的概率图模型习题。在这里,我们将使用 Python 的 pgmpy 库来构建和分析概率图模型。 首先,我们需要安装 pgmpy。可以使用 pip 安装: ```python pip install pgmpy ``` 安装完成后,我们就可以开始实现习题了。 #### 习题 14.1 考虑一个三元组 $(X, Y, Z)$,其中 $X$ 是二元随机变量,$Y, Z$ 是一元随机变量,试构造一个无向图结构,使其成为正态分布的一个合法图模型。 我们可以使用 pgmpy 来创建这个无向图模型。代码如下: ```python from pgmpy.models import MarkovModel # 创建一个空的无向图模型 model = MarkovModel() # 添加变量节点 model.add_nodes_from(['X', 'Y', 'Z']) # 添加边 model.add_edges_from([('X', 'Y'), ('X', 'Z')]) # 将模型转换成正态分布模型 from pgmpy.factors.continuous import ContinuousFactor from pgmpy.inference import Inference # 定义正态分布的 mean 和 covariance mean = [0, 0, 0] covariance = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # 创建正态分布因子 factor = ContinuousFactor(['X', 'Y', 'Z'], mean, covariance) # 将因子添加到模型中 model.add_factors(factor) # 执行因子分解 inference = Inference(model) factors = inference.factors() ``` 在上面的代码中,我们首先创建了一个空的无向图模型,然后添加了三个变量节点 $X, Y, Z$ 和两条边 $(X, Y), (X, Z)$。接着,我们使用 `pgmpy.factors.continuous.ContinuousFactor` 来定义正态分布的 mean 和 covariance,并将其添加到模型中。最后,我们使用 `pgmpy.inference.Inference` 来执行因子分解,得到了模型中的所有因子。 #### 习题 14.2 考虑一个四元组 $(X_1, X_2, X_3, X_4)$,它们之间的关系如下图所示。试构造这个有向图结构的贝叶斯网模型。 ![image.png](attachment:image.png) 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X1', 'X2', 'X3', 'X4']) # 添加边 model.add_edges_from([('X2', 'X1'), ('X3', 'X1'), ('X3', 'X2'), ('X4', 'X2')]) # 打印模型结构 print(model.edges()) ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了四个变量节点 $X_1, X_2, X_3, X_4$ 和四条边 $(X_2, X_1), (X_3, X_1), (X_3, X_2), (X_4, X_2)$。最后,我们打印出了模型的边结构。 #### 习题 14.3 考虑一个五元组 $(X_1, X_2, X_3, X_4, X_5)$,它们之间的关系如下图所示。试构造这个有向图结构的贝叶斯网模型。 ![image-2.png](attachment:image-2.png) 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X1', 'X2', 'X3', 'X4', 'X5']) # 添加边 model.add_edges_from([('X2', 'X1'), ('X3', 'X1'), ('X4', 'X2'), ('X5', 'X2'), ('X5', 'X3')]) # 打印模型结构 print(model.edges()) ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了五个变量节点 $X_1, X_2, X_3, X_4, X_5$ 和五条边 $(X_2, X_1), (X_3, X_1), (X_4, X_2), (X_5, X_2), (X_5, X_3)$。最后,我们打印出了模型的边结构。 #### 习题 14.4 考虑一个六元组 $(X_1, X_2, X_3, X_4, X_5, X_6)$,它们之间的关系如下图所示。试构造这个有向图结构的贝叶斯网模型。 ![image-3.png](attachment:image-3.png) 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X1', 'X2', 'X3', 'X4', 'X5', 'X6']) # 添加边 model.add_edges_from([('X2', 'X1'), ('X3', 'X1'), ('X4', 'X2'), ('X5', 'X3'), ('X6', 'X4'), ('X6', 'X5')]) # 打印模型结构 print(model.edges()) ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了六个变量节点 $X_1, X_2, X_3, X_4, X_5, X_6$ 和六条边 $(X_2, X_1), (X_3, X_1), (X_4, X_2), (X_5, X_3), (X_6, X_4), (X_6, X_5)$。最后,我们打印出了模型的边结构。 #### 习题 14.5 考虑一个二元组 $(X, Y)$,其中 $X$ 是一元随机变量,$Y$ 是二元随机变量,试构造一个有向图结构,使其成为正态分布的一个合法图模型。 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X', 'Y1', 'Y2']) # 添加边 model.add_edges_from([('X', 'Y1'), ('X', 'Y2')]) # 将模型转换成正态分布模型 from pgmpy.factors.continuous import ContinuousFactor from pgmpy.inference import Inference # 定义正态分布的 mean 和 covariance mean = [0, 0, 0] covariance = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # 创建正态分布因子 factor = ContinuousFactor(['X', 'Y1', 'Y2'], mean, covariance) # 将因子添加到模型中 model.add_factors(factor) # 执行因子分解 inference = Inference(model) factors = inference.factors() ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了三个变量节点 $X, Y_1, Y_2$ 和两条边 $(X, Y_1), (X, Y_2)$。接着,我们使用 `pgmpy.factors.continuous.ContinuousFactor` 来定义正态分布的 mean 和 covariance,并将其添加到模型中。最后,我们使用 `pgmpy.inference.Inference` 来执行因子分解,得到了模型中的所有因子。 以上就是本次的答案,希望对您有所帮助!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值