课程资料|机器学习-周志华 教材+课后习题答案!

写在前面

学习成绩,不管是是保研、考研、出国留学,还是找实习找工作,都是你极为重要的支撑为了帮助同学们更好地学习专业课、斩获高绩点,岛主将持续推出CS相关的专业教材资料!希望同学们能够在接下来的学习生活中取得良好的成绩!

今天为大家带来的是

↓↓↓

机器学习-周志华

电子版 教材+答案

机器学习是计算机科学的重要分支领域。本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面。全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等。每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索。

向下滑动查看所有内容

教材展示

左右滑动查看更多

课后答案展示

左右滑动查看更多

### 周志华机器学习》第二章课后习题答案 #### 2.10 Friedman检验中使用式(2.34) 和 (2.35) 的区别 Friedman检验是一种非参数统计方法,适用于多组相关样本之间的差异分析。当处理多个模型在同一测试集上的性能评估时尤为有用。 - **式(2.34)** 主要用于计算各算法排名的平均值及其方差,从而构建出一个衡量不同算法之间相对表现的标准。具体来说,该公式帮助量化每种算法在整个实验中的总体表现位置[^3]。 - **式(2.35)** 则进一步利用上述得到的信息来决定是否存在显著性的差别。通过引入临界值的概念,可以据此判断所观察到的表现差距是否超出了随机波动所能解释的程度之外。如果实际计算所得的结果超过了设定好的阈值,则说明至少有两个被比较的对象间确实存在明显不同的效果。 为了更直观理解这两个公式的应用过程以及它们各自的作用: ```python import numpy as np from scipy.stats import friedmanchisquare # 示例数据:假设有三个分类器A、B、C分别在五个数据集上进行了测试 data = [ [87, 92, 85], # 数据集1上的准确率 [89, 90, 88], [91, 93, 86], [88, 91, 87], [90, 94, 89] ] chi_statistic, p_value = friedmanchisquare(*np.array(data).T) print(f"Chi-square statistic: {chi_statistic}") print(f"P-value: {p_value}") if p_value < 0.05: print("At least two classifiers have significantly different performances.") else: print("No significant difference among classifier performances.") ``` 这段Python代码展示了如何运用SciPy库执行Friedman检验,并依据返回的卡方统计量和P值做出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值