周志华《机器学习》西瓜书第十章的习题答案较少,只找到了两篇,见文末链接,以下是个人对这章的习题的理解,如有问题,欢迎指正。其中第一题和第六题网上答案较多,不再重复。
10.2关于err,err*不等式的证明
这里|y|是类的数量。
10.3“中心化”,常见的方法是将协方差矩阵转换为,其中H=。
中心化,即,X为dxm维,,
1为mx1维的全1列向量,,
,其中,是dx1维的。
所以有 。
10.4由中心化后的样本矩阵X的奇异值分解代替,试讲述原因。
等价:X的奇异值分解为,,而,,因此。对特征分解,有,只需P=U即可。
另外,用奇异值分解代替特征分解,节省了计算和存储的成本,且计算精度较高。
10.5正交、非正交投影矩阵用于降维的优缺点。
正交:属性间独立,维数更低,耦合性小。
非正交:保留了属性间的联系。
正交投影矩阵还满足 最佳逼近定理。
10.7核化线性降维和流形学习之间的联系和优缺点。
联系:都是非线性降维。
KPCA:先升到高维,在高维中是线性的,再用PCA降维。有核方法的一切优势,但计算量较大,核函数难选。新样本值可直接带入。难以兼顾泛化性和效率.
流形学习:可在保持原结构的条件下降维,假设和近似条件较多(只是假设流形存在),解决了部分高维的问题,但不能总适合数据的特点,计算复杂度较高,分类能力较弱(如短路断路问题),低维的维度数难确定,新样本难带入,对噪声敏感,大部分问题目前仍在研究中。
10.8k近邻图和ε近邻图存在的短路和断路问题会给Isomap造成困扰,试设计一个方法缓解该问题。
k与ε联合使用;
网上有论文使用基于聚类的方法和基于优化拓扑结构的方法。
10.9试设计一个方法为新样本找到LLE降维后的低维坐标。
寻找k近邻——>根据式10.28计算wij——>用k近邻的zj和wij线性表示该新样本。
10.10试述如何确保度量学习产生的距离能满足距离度量的四条基本性质。
不是很理解这道题的意思,是不是要求M是半正定的?