周志华《机器学习》西瓜书-第十章-习题

周志华《机器学习》西瓜书第十章的习题答案较少,只找到了两篇,见文末链接,以下是个人对这章的习题的理解,如有问题,欢迎指正。其中第一题和第六题网上答案较多,不再重复。

10.2关于err,err*不等式的证明

这里|y|是类的数量。


10.3“中心化”,常见的方法是将协方差矩阵XX^T转换为XHH^TX^T,其中H=I-\frac{1}{m}(1)(1^T)

中心化,即X=X-\bar{X},X为dxm维,X=[X_{1},X_{2},...X_{m}]

1为mx1维的全1列向量,1_{m}=[1,1,...,1]^T

\bar{X}=[\bar{x},\bar{x},...,\bar{x}]=\bar{x}1_{m}^T,其中\bar{x}=\frac{1}{m}X1_{m},是dx1维的。

所以有X-\bar{X}=X-\bar{x}1_{m}^T=X-\frac{1}{m}X1_{m}1_{m}^T=X(I-\frac{1}{m}1_{m}1_{m}^T)

10.4由中心化后的样本矩阵X的奇异值分解代替,试讲述原因。

等价:X的奇异值分解为X=U\Sigma V^TXX^T=U\Sigma V^T(U\Sigma V^T)^T=U\Sigma V^TV\Sigma^TU^T,而V^TV=1U^TU=1,因此XX^T=U\Sigma \Sigma^TU^T=U\Lambda U^T。对XX^T特征分解,有XX^T=P\Lambda P^T,只需P=U即可。

另外,用奇异值分解代替特征分解,节省了计算和存储的成本,且计算精度较高。

10.5正交、非正交投影矩阵用于降维的优缺点。

正交:属性间独立,维数更低,耦合性小。
非正交:保留了属性间的联系。
正交投影矩阵还满足 最佳逼近定理。

10.7核化线性降维和流形学习之间的联系和优缺点。

联系:都是非线性降维。
KPCA:先升到高维,在高维中是线性的,再用PCA降维。有核方法的一切优势,但计算量较大,核函数难选。新样本值可直接带入。难以兼顾泛化性和效率.
流形学习:可在保持原结构的条件下降维,假设和近似条件较多(只是假设流形存在),解决了部分高维的问题,但不能总适合数据的特点,计算复杂度较高,分类能力较弱(如短路断路问题),低维的维度数难确定,新样本难带入,对噪声敏感,大部分问题目前仍在研究中。

10.8k近邻图和ε近邻图存在的短路和断路问题会给Isomap造成困扰,试设计一个方法缓解该问题。

k与ε联合使用;
网上有论文使用基于聚类的方法和基于优化拓扑结构的方法。

10.9试设计一个方法为新样本找到LLE降维后的低维坐标。

寻找k近邻——>根据式10.28计算wij——>用k近邻的zj和wij线性表示该新样本。

10.10试述如何确保度量学习产生的距离能满足距离度量的四条基本性质。

不是很理解这道题的意思,是不是要求M是半正定的?


参考文章

http://www.lunarnai.cn/2018/12/06/watermelon-chap-10/

https://blog.csdn.net/VictoriaW/article/details/78359362
 

### 关于周志华机器学习》(西瓜)第二章的学习笔记 #### 模型评估与选择概述 模型评估与选择是机器学习领域的重要组成部分,旨在通过合理的方法评价不同模型的表现并挑选最优者。这一过程不仅涉及如何衡量单个模型的好坏,还包括怎样对比多个候选方案以做出最佳决策。 #### 偏差、方差和噪声的概念解析 偏差度量了学习算法的期望预测与实际结果之间的差距,反映了算法自身的拟合精度;方差描述的是相同规模训练集变化引起的学习效果波动情况,体现了数据扰动带来的影响;而噪声则设定了给定任务下所有可能采用的学习方法能达到的最佳预期泛化误差界限,揭示了问题本身固有的复杂性和挑战性[^2]。 #### 性能度量指标——P-R图及其应用 为了更直观地展示各类分类器的工作特性,通常会绘制精确率-召回率(Precision-Recall, P-R)曲线来辅助分析。当面对多组实验结果时,可以通过观察这些图形相互间的位置关系来进行优劣评判:如果某条曲线始终位于另一条之上,则表明前者具有更好的整体表现;而对于那些存在交点的情况,则需进一步计算各自下方区域面积大小作为判断依据之一。此外,“平衡点”作为一种特殊的性能测度,在特定条件下也能提供有价值的参考信息[^3]。 #### 偏差-方差分解理论简介 该理论为理解学习算法的一般化能力提供了框架性的指导思路,通过对平均测试错误率实施拆分操作,可以深入剖析导致过拟合现象背后的原因所在,并据此探索改进措施的方向。具体而言,总误差由三部分构成——不可约减误差点(即噪声)、平方形式表达出来的偏差项以及线性累加而成的方差成分[^4]。 ```python import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_curve, auc def evaluate_model_performance(model, X, y): """ 计算并返回PR曲线下面积(AUC),用于量化模型的整体性能。 参数: model (object): 已经训练好的分类模型实例。 X (array-like of shape (n_samples, n_features)): 测试特征矩阵。 y (array-like of shape (n_samples,)): 对应的真实标签向量。 返回: float: PR AUC得分。 """ # 划分训练集/验证集 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2) # 使用训练集拟合模型 model.fit(X_train, y_train) # 获取验证集中各观测对应的概率估计值 probas_pred = model.predict_proba(X_val)[:, 1] # 绘制PR曲线并求得AUC分数 precisions, recalls, _ = precision_recall_curve(y_val, probas_pred) pr_auc_score = auc(recalls, precisions) return pr_auc_score ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值